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Where are we?

» Since the course started, we have been developing a series of concepts and
techniques centering around the idea of a language of thought.

« We started with the philosophical idea of an LoT

* Then, we looked at how to model a fragment of the LoT for various
conceptual domains, using PCFGs.

 Last time we started looking at Bayesian inference, with the aim of
understanding how to learn sentences in the LoT from observations.

« Today we are going to keep looking at how to deal with an LoT
probabilistically!
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The problem: Bayesian evidence

- Last time we talked about Bayesian inference, but we didn’t talk about how
to do it in practice.

* Good old Bayes theorem:

P(D|H)P(H)  P(D|H)P(H)
P(D) >_n P(D | h)P(h)
 To calculate the denominator, we need to sum (or integrate) across all
hypotheses. This is not possible except for the very simplest cases!

- E.g., consider: P(positive test | sick) = 0.9, P(positive test | not sick) = 0.1,
P(sick) = 0.1. We can calculate P(sick | positive test).

* But in general, we need an alternative approach.

P(H | D) =
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Note: We care about expectations

 The point here is that when it comes to analyzing the posterior distribution
of a random variable X, we usually care about the expectation of a function
of X, e.g. the mean or the variance.

« And therefore we can express our question about the posterior as a sum /
an integral of a function of X.

« This is where a technique called Monte Carlo Integration is useful.
« Suppose we have a bunch of samples x4, ..., x5 from a distribution. Then:

N
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Monte Carlo integration

« Monte Carlo Integration means that to get any information we want from
the posterior (e.g. mean, variance, histograms, etc.), all we need is samples
from the posterior.

 Therefore, if we can get posterior samples, that’s enough even if we can’t
calculate the full posterior probability.

« And it turns out that there’s a (family of) really convenient algorithms to
get samples from a probability even if all we have is a function that is just
proportional to the distribution density function.

» The simplest algorithm of this type (which is used in Piantadosi’s LOTIib3
library) is called Metropolis-Hastings algorithm.
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Metropolis-Hastings algorithm

- Imagine you are on a ship on a lake

* You have a stick with which you can poke the bottom of the lake and
determine its depth.

« Some parts of the lake are deeper than others and some more shallow.

* Problem: write down a list of points on the lake with a probability
proportional to their depth.

« How would you go about doing this?
* Do you see why this is equivalent to the problem we have?
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Metropolis-Hastings algorithm

 One solution:
e Start at any point P_.....,; at random
e Then fori=1;1 < N; i++:
* Move to a different point P, ., ..q following a certain (symmetric)
probability distribution centered at P
- It depth(Pproposed) > depth(Pcurrent):
* Move to P l.e.set P
* Else:
* Move to P, 0sea With probability depth(P,,,posea) / P(Peyrrent)
o If they’re almost the same, move with high probability, etc.

« Metropolis-Hastings is just this, but instead of depth we have probability!

current

proposed» current — Pproposed
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Asymmetric proposal distribution
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Summary: Markov-chain Monte Carlo

* If some pretty weak conditions are satisfied, in the limit of infinite samples
the distribution of samples converges to the true posterior distribution.

« We can think of MCMC as a way of getting samples from the posterior
without knowing the normalization constant for the posterior, i.e. the
Bayesian evidence.

« If we get enough samples, we can calculate an expectation of a function of
the posterior with high accuracy, and therefore any ‘summary’ we are
interested in.

« Now we have all the ingredients we need to apply Bayesian inference to
cognitive models!



Case study: Simple category learning

« Suppose that we are trying to learn a category from examples.

 For simplicity, suppose that
» The space is simply the integers from 1 to 50
» The examples are numbers from the category
 The category is convex, meaning we just need to set two borders

» We get examples from the category. There are two options:
* Weak sampling: Both positive and negative evidence can be seen
« Strong sampling: Only positive evidence can be seen
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Simple category learning

Let’s go over this case of inference, !
assuming we got one observation!  w=cw
0 : l ' ' ® : ' ' !

55 56 57 58 59 60 61 62 63 64 65

« What’s the space of hypotheses? =1 L e
« What’s the posterior, likelihood, e R
and prior? nes|

« What happens if we get more .
observations? —

Ihl=5

Ihl =6




Simple category learning

* One important phenomenon here is
the size effect

» More observations within a range
makes the probability of the borders
decrease faster.

 Can you see why formally?
 Can you see why intuitively?
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PCFGs and probabilities

« We have seen how to add probabilities to the production rules of a
grammar, and we called those probabilistic context-free grammars.

 Basically, they give us the conditional probability of applying each rule
given a certain nonterminal.

 This was the only point where probabilities enter the CFGs. However, we
can also have probabilities at the level of the interpretation function.

* In this case, the interpretation of a sentence is not deterministic:
evaluating a certain sentence multiple times can return different object.

A sentence then returns a distribution over objects (in the relevant
domain).
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PCFGs and probabilities

 For instance, consider a fragment of the LoT that encodes handwritten characters.
In a way, we can recognize the following as being ‘the same character’:

VI

1 2
I UL | | ST ST
JTTC e 9174 msn’bm
ST ™ Izl TV (g

« The most natural way to make sense of this is to say that the same pLoT sentence
can be realized in different ways, in virtue of it having a probabilistic component.

* In the context of learning an LoT expression from data, this gives us a likelihood
P(data | LoT sentence).
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Learning in a grammar

 Putting everything together, can we think of a way of sampling from the
posterior distribution over sentences in an LoT given some observations?

* Prior, likelihood, proposal distribution



