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Where are we now?

• We have now learned about how to:
• Write a formal grammar for a specific cognitive domain, e.g. music
• Write an interpretation function for it that gives each sentence in the 

grammar a meaning, compositionally.

• This is cool as it allows us to generate objects from the domain randomly.

• However, we can’t really do anything useful with this.

• What we want to do is go the other way:
• Start from some object(s) in the domain
• Infer what sentence(s) in the LoT generated it / what grammar

• For this, we are going to need how to go from a generative process and 
some observations to the probability of hidden causes: Bayesian inference!



Interpretations of probability

• It is tempting to say: probability is anything satisfying the probability axioms.

• Kolmogorov axioms:

1. (Non-negativity) P(A) ≥ 0, for all A∈F.

2. (Normalization) P(Ω)=1.

3. (Additivity) P(A∪B)=P(A)+P(B) for all A,B∈F such that A∩B=∅

• However, this is not very satisfying: we can give a semantics to the 
Kolmogorov axioms with things that are clearly not probabilities, e.g. 
normalized weight.

• And there are other axiomatizations of probability.

• It seems like we need to first decide on some notion of probability to then 
formalize it.



Three main interpretations (SEP)

• Classical / logical / evidential: An epistemological concept, which is meant 
to measure objective evidential support relations. For example, “in light of 
the relevant seismological and geological data, California will probably 
experience a major earthquake this decade”.

• Frequentist: A physical concept that applies to various systems in the 
world, independently of what anyone thinks. For example, “a particular 
radium atom will probably decay within 10,000 years”.

• Subjective: The concept of an agent’s degree of confidence, a graded belief. 
For example, “I am not sure that it will rain in Canberra this week, but it 
probably will.”

• Typically, Bayesian probability is associated with the subjective view!
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Conditional probability to Bayes theorem

• We can see that the numerator in the calculations for P(X=x|Y=y) and 
P(Y=y|X=x) is the same, namely: the set of events that satisfy both!

• But the denumerator changes in the two expressions:

• P(X=x|Y=y) it’s the probability of the set of events that are y
• P(Y=y|X=x) it’s the probability of the set of events that are x

• Going from one to the other gives us Bayes theorem:



A motivating example

• Suppose that we have a bag with an infinite number of marbles.

• n% of the marbles are blue, 1-n% are red.

• Suppose we take 20 marbles out of the bag.

• We know from a couple weeks ago how to calculate the probability of 
getting exactly m blue marbles as a function of n.

• But suppose we don’t know n. Rather, we get a number m of blue marbles 
and we want a posterior over possible proportions n.

• Can we write this with conditional probability notation?

• Conceptually, what we need to do is go from one conditional probability, 
namely P(m blue marbles | n) to another, namely P(n | m blue marbles)



Bayes’ theorem, a simple derivation

• To do this, we can use Bayes theorem

• There is also a simple derivation of Bayes theorem you can keep in mind.

• First, note that from the definition of conditional probability we can write 
the joint in two different ways:



The components of Bayes theorem

• Three ingredients in Bayes theorem:

• The likelihood is the probability of the data given the hypothesis (as a 
function of the hypothesis though!)
• How to interpret it?

• The prior is the probability of the hypothesis NOT conditioned on the data
• How to interpret it?

• The evidence is the probability of the data NOT condition on an H.
• How to interpret it?



The components of Bayes theorem

• Three ingredients in Bayes theorem:

• Let’s think what happens when we change the components individually.

• Note that you can rewrite the evidence as a sum! Which one?
• This means that if we calculate the numerators for all hypotheses and 

put them in a vector, and then we normalize the vector (divide it by its 
sum), we don’t need to explicitly calculate the evidence.

• If the space of hypotheses is infinite, it’s often easy to calculate the 
numerator and hard or impossible to calculate the denominator!

• Is this all clear?



Bayes’ theorem vs Bayesian update

• Usually, we apply Bayes theorem to calculate P(H | D), where:

• The hypothesis is something about the world we can’t observe directly

• The data is something we can observe directly

• You can think of an application of Bayes theorem as a way of updating 
one’s model of the world when new data comes in.

• A prior and a posterior then are relative to one update

• So we can think of one application of Bayes’ theorem as an update in the 
state of knowledge given some data

• This gives a very natural way of thinking about the way humans could 
update their picture of unknown quantities given a stream of new evidence.



Applying Bayes’ theorem to example

• Example 1:
• Suppose we got the following sample from the bag above:
• 4 blue marbles, 6 red marbles
• Let’s calculate the posterior of n

• Example 2:
• Now I observe one more red marble. 
• What happens?

• A person tells good jokes 30% of the time, alright jokes 30% of the time and bad 
jokes 40% of the time. Their friend laughs 10% of the time when it’s a good joke; 
3% of the time when it’s okay; and 7% of the time when it’s bad.
• What is the probability it was a bad joke if their friend laughs?
• What is the probability it was an okay joke if their friend doesn’t laugh?



Causal graphs

• Imagine we have a bunch of random variables X, Y, Z

• This induces a joint distribution P(X, Y, Z)

• We can factor this in various equivalent ways, e.g.
• P(X, Y | Z) P(Z)
• P(Y | X, Z) P(X | Z) P(Z)
• Etc.

• We know that least some of these conditional probs will 
depend on the way the variables causally influence each 
other.

• In a causal graph, we have a node for each variable, and we 
draw an arrow from A to B iff A causally influences B.
• E.g. P(X, Y, Z) = P(Z|Y)P(X|Y)P(Z|X)

• We can distinguish between seen and unseen variables!
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Thinking in generative terms

• The Bayesian approach is generative. This means that we imagine the data 
as being generated by some (unseen) mechanism.

• In practice, we start with a joint over data and hypotheses: 
• P(data, hypothesis)
• The hypothesis is a combination of values for all the unseen variables

• Which then factorizes into prior and likelihood 
• P(data|hypothesis)P(hypothesis)

• The prior is the distribution we give to the unconditional random variables 
in the generative mechanism, the likelihood is defined by all the 
conditional probabilities.

• We can also give a value to all the unconditional variables in the generative 
model and do a ‘forward pass’ through the model, i.e. calculate P(D|H)



Bayesian inference in formal grammars

• How do you think we could use Bayesian inference to learn a sentence in a 
grammar (the LoT) given some observations?

• What’s the prior, likelihood, evidence, and posterior?

• What is going to be the practical problem with this?

• Next week we’re going to see how we can partially solve this problem!



Summary

• This week we have seen a little bit about Bayesian inference.

• In particular, starting from the concept of a conditional distribution, we 
have seen how to go from one conditional P(D|H) and a prior P(H) to a 
posterior P(H|D)

• This is basically the fundamental idea of Bayesian inference. Everything 
else is an elaboration on this.

• A big problem with Bayesian inference is computational: we need clever 
algorithms to actually find the posterior.

• Next week we are going to see one such algorithm, the Metropolis-
Hastings algorithm.

• We’ll also see how to apply it to some basic cognitive examples.


