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Where are we now?

« We have now learned about how to:
« Write a formal grammar for a specific cognitive domain, e.g. music

- Write an interpretation function for it that gives each sentence in the
grammar a meaning, compositionally.

« This is cool as it allows us to generate objects from the domain randomly.
« However, we can’t really do anything useful with this.

« What we want to do is go the other way:
« Start from some object(s) in the domain
 Infer what sentence(s) in the LoT generated it / what grammar

- For this, we are going to need how to go from a generative process and
some observations to the probability of hidden causes: Bayesian inference!
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Interpretations of probability

« It is tempting to say: probability is anything satisfying the probability axioms.
« Kolmogorov axioms:

1. (Non-negativity) P(A) > o, for all A€F.

2. (Normalization) P(Q)=1.

3. (Additivity) P(AUB)=P(A)+P(B) for all A,BEF such that ANB=0

« However, this is not very satisfying: we can give a semantics to the
Kolmogorov axioms with things that are clearly not probabilities, e.g.
normalized weight.

« And there are other axiomatizations of probability.

* It seems like we need to first decide on some notion of probability to then
formalize it.
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Three main interpretations (SEP)

e Classical / logical / evidential: An epistemological concept, which is meant
to measure objective evidential support relations. For example, “in light of
the relevant seismological and geological data, California will probably
experience a major earthquake this decade”.

» Frequentist: A physical concept that applies to various systems in the
world, independently of what anyone thinks. For example, “a particular
radium atom will probably decay within 10,000 years”.

* Subjective: The concept of an agent’s degree of confidence, a graded belief.
For example, “I am not sure that it will rain in Canberra this week, but it
probably will.”

 Typically, Bayesian probability is associated with the subjective view!
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From joint to conditional
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From joint to conditional
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From joint to conditional
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Conditional probability to Bayes theorem

« We can see that the numerator in the calculations for P(X=x|Y=y) and
P(Y=y|X=x) is the same, namely: the set of events that satisfy both'

« But the denumerator changes in the two expressions:
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« P(X=x|Y=y) it’s the probability of the set of events that are y
« P(Y=y|X=x) it’s the probability of the set of events that are x

* Going from one to the other gives us Bayes theorem:
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A motivating example

« Suppose that we have a bag with an infinite number of marbles.
* n% of the marbles are blue, 1-n% are red.
« Suppose we take 20 marbles out of the bag.

« We know from a couple weeks ago how to calculate the probability of
getting exactly m blue marbles as a function of n.

» But suppose we don’t know n. Rather, we get a number m of blue marbles
and we want a posterior over possible proportions n.

 Can we write this with conditional probability notation?

 Conceptually, what we need to do is go from one conditional probability,
namely P(m blue marbles | n) to another, namely P(n | m blue marbles)
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Bayes’ theorem, a simple derivation

 To do this, we can use Bayes theorem
 There is also a simple derivation of Bayes theorem you can keep in mind.

* First, note that from the definition of conditional probability we can write
the joint in two different ways:

P(H&D) = P(H | D)P(D)

— P(D | H)P(H)

P(H | D)P(D) = P(D | H)P(H)
P(H | D) = P(DPZ;)P(H)
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The components of Bayes theorem

 Three ingredients in Bayes theorem: Likelihood Prior

I's -~ \/_/H

P(D | H)P(H)
P(D)
N——

Fuvidence

P(H | D) =

 The likelihood is the Erobability of the data given the hypothesis (as a
function of the hypothesis though!)

 How to interpret 1t?

 The prior is the probability of the hypothesis NOT conditioned on the data
« How to interpret it?

« The evidence is the probability of the data NOT condition on an H.
« How to interpret it?
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The components of Bayes theorem

 Three ingredients in Bayes theorem: Likelihood Prior

I's -~ \/_/H

P(D | H)P(H)
P(D)
N——

Fuvidence

P(H | D) =

 Let’s think what happens when we change the components individually.

 Note that you can rewrite the evidence as a sum! Which one?

- This means that if we calculate the numerators for all hypotheses and
put them in a vector, and then we normalize the vector (divide it by its
sum), we don’t need to explicitly calculate the evidence.

- If the space of hypotheses is infinite, it’s often easy to calculate the
numerator and hard or impossible to calculate the denominator!

e Is this all clear?
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Bayes’ theorem vs Bayesian update

 Usually, we apply Bayes theorem to calculate P(H | D), where:
» The hypothesis is something about the world we can’t observe directly
» The data is something we can observe directly

 You can think of an application of Bayes theorem as a way of updating
one’s model of the world when new data comes in.

A prior and a posterior then are relative to one update

« So we can think of one application of Bayes’ theorem as an update in the
state of knowledge given some data

 This gives a very natural way of thinking about the way humans could
update their picture of unknown quantities given a stream of new evidence.
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Applying Bayes’ theorem to example

« Example 1:
« Suppose we got the following sample from the bag above:
* 4 blue marbles, 6 red marbles
 Let’s calculate the posterior of n

« Example 2:
« Now I observe one more red marble.
« What happens?
. erson tells 1%ood jokes 30% of the time, alright jokes 30% of the time and bad

jokes 40% of the time. Their friend laughs 10% of the time when it’s a good joke;
3% of the time when it’s okay; and 7% of the time when it’s bad.

« What is the probability it was a bad joke if their friend laughs?
« What is the probability it was an okay joke if their friend doesn’t laugh?



Causal graphs

« Imagine we have a bunch of random variables X, Y, Z
 This induces a joint distribution P(X, Y, Z)
« We can factor this in various equivalent ways, e.g.

- P(X,Y | Z) P(Z)

- P(Y | X,Z) P(X | Z) P(Z)

* Etc.

« We know that least some of these conditional probs will
depend on the way the variables causally influence each
other.

 In a causal graph, we have a node for each variable, and we
draw an arrow from A to B iff A causally influences B.

. E.g. P(X,Y, Z) = P(Z|Y)P(X|Y)P(Z|X)
« We can distinguish between seen and unseen variables!
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Thinking in generative terms

« The Bayesian approach is generative. This means that we imagine the data
as being generated by some (unseen) mechanism.
 In practice, we start with a joint over data and hypotheses:
 P(data, hypothesis)
 The hypothesis is a combination of values for all the unseen variables
« Which then factorizes into prior and likelihood
» P(data|hypothesis)P(hypothesis)
 The prior is the distribution we give to the unconditional random variables

in the generative mechanism, the likelihood is defined by all the
conditional probabilities.

« We can also give a value to all the unconditional variables in the generative
model and do a ‘forward pass’ through the model, i.e. calculate P(D|H)
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Bayesian inference in formal grammars

« How do you think we could use Bayesian inference to learn a sentence in a
grammar (the LoT) given some observations?

« What’s the prior, likelihood, evidence, and posterior?
« What is going to be the practical problem with this?

» Next week we're going to see how we can partially solve this problem!



UNIVERSITAT
TUBINGEN

Summary

 This week we have seen a little bit about Bayesian inference.

* In particular, starting from the concept of a conditional distribution, we
have seen how to go from one conditional P(D|H) and a prior P(H) to a
posterior P(H|D)

« This is basically the fundamental idea of Bayesian inference. Everything
else is an elaboration on this.

A big problem with Bayesian inference is computational: we need clever
algorithms to actually find the posterior.

» Next week we are going to see one such algorithm, the Metropolis-
Hastings algorithm.

« We'll also see how to apply it to some basic cognitive examples.



