:

EBERHARD KARLS

UNIVERSITAT
TUBINGEN

Conclusions

Or: DreamCoder and conclusive remarks

- The Language of Thought: computational cognitive science approaches to category learning

- Who: Fausto Carcassi

- When: Sommer semester 2022

UNIVERSITAT
TUBINGEN

Where are we?

« We have finally reached the last week!

» We have covered quite a lot of stuft:
 The philosophical background on the Language of Thought (Fodor)
« Some technical background
e Formal grammars
« Compositional semantics with lambda calculus
 Bayesian inference and MCMC for approximating a posterior
» The probabilistic Language of Thought
» The LOTIib3 library
« Some applications to various conceptual domains

UNIVERSITAT
TUBINGEN

Where are we?

» Today let’s have a look at two things:
 What the state of the art is (DreamCoder)
» Where the people in the field see it going (The Child as a Hacker)
 In the lab this week we will again write together a little inference script for
a conceptual domain

« I was thinking we could do a little model to fit a function with some
simple operations

« So we might get some input-output combos ([0, 0.3], [0.4, -0.1], ...)
and we have to infer an expression that encodes them (e.g., y = log(x)-

2)

UNIVERSITAT
TUBINGEN

DreamCoder: The general idea

* The problem: Program Induction / pLoT is not scalable compared to
neural network systems!

 Why do you think that is?

* Program Induction systems need to start with a domain specific language.

« This is partially because if we start with domain general primitives the
programs we need to solve practical problems become so long that they
can’t be inferred

« Combinatorial /discrete nature of the search space

 The space of programs isn’t continuous, so we can’t use our best

algorithms (e.g., gradient descent or Hamiltonian monte carlo)

« DreamCoder attempts to solve both of these problems!

UNIVERSITAT
TUBINGEN

DreamCoder: The general idea

Two related ideas:

* Instead of a fixed list of primitives, grow new concepts, so that the inferred
programs are shorter!

 This library of new learned concepts will depend on the specific
domain, so that DreamCoder grows a domain-specific language.

 Learn implicit procedural knowledge

 This means that observing the object to be inferred gives us some ideas
about which concepts we are going to need and how

 This is what we do when we actual program, and it relies on intuition,
and so the most natural way is to use a neural networks that goes from
the data to the probability of each substitution rule!

:

EBERHARD KARLS

UNIVERSITAT
TUBINGEN

DreamCoder: Learning

Wake

- F

Objective: For each task = in X, find best program p,. solving x under current library L

Library L

fix) =Gz 1) =' Neurally guided search

fa(z) =(fold cons Propose programs p in Best program p, for task x
(cons z nil)) Recognition decreasing order under Q(-|x) (map f; (fold f; mil x))

""""" Model Q(-|z) until timeout

Task x) % % 4 Choose p, that maximizes:

e e (7 2 31—[4 3 8] P [plz, L] o< P [z|p] P[p|L]
«V th dtob — |
Adrious tnings neea to be s 8150 41

[4 3 2]—([3 4 5]

done:
° HOW do We grow new _‘SIeep: Abstraction

Objective: Grow library L to compress

ConceptS? programs found during waking

Sleep: Dreaming

Objective: Train recognition model Q(p|x)
to predict best programs p, for typical
tasks x and current library L

program for task 1 program for task 2

 How and when is the Cons ¢+ 1) Ccar 2 D) T I g
: 5 . PN ogams 38 ¢ e
1 from =5 Ived i
ANN tralnedo + 1 1 +car z Iib,:aryL g % \sn?a\lr:iengm
. l l \\ ," 2. set taSkf 2. set program
\ N to output o to retrieved
 Solution: Wake/Sleep : .' S e

Refactoring

] P lib ines fi \
Program Learning sbmeesof esctangs of mogtam i

A
1
\ A} 7
: Train network on z,p pairs
1
New library L H \ x ¥
tine ! ! Task S5 Program
w/ rou o K ' * > N
Expand L w/ /<\ * P ..) AN p
the routine that N : - o
maximizes: Repeat Train Gradient step in parameters of ()
PIL [Lex max P [z|p] P [p| L] until no until to maximize log Q(p|z)
pr refactorings of pz increase converged .

in score

UNIVERSITAT
TUBINGEN

DreamCoder: Results

* First test. Two classic domains: List processing and text editing (218 problems)
 In both domains, the program defines a function
« DreamCoder starts with a domain-general functional basis

« Each round of abstraction built on concepts discovered in earlier sleep cycles

« E.g., first learns filter, then uses it to learn to take the maximum element of a
list, then uses that routine to learn a new library routine for extracting the nth
largest element of a list, which it finally uses to sort lists of numbers

« DreamCoder solves 84.3% of the problems with 1 hour & 8 CPUs per problem.

 The best-performing synthesizer in this competition (CVC4) solved 82.4% of
the problems.

* CVC4 had a different hand-engineered library of primitives for each text
editing problem!

DreamCoder: Results

» Second test. More creative domains: generating images, plans, and text.

» Programs to learn (30 out of 160) for LOGO shapes task:

/o' C OO0 =« O & % .~
@ o0 e ¢ ~ 7w A OF

» Some learned parametric ‘shape concepts’ and higher order function:

N radial symmetry(n, body)
semicircle(r)))) T TR
circle(r) - o O O O & o: o o0 /clao
iral(do 0" °0 20 %6 %o
spiral(df) N C o @ e
greek spiral(n) cl ol ’E@ Y o0 % D B
s-curve(r) s § %\ FHBRR
o) 50000 o 2R @@

EBERHARD KARLS

UNIVERSITAT
TUBINGEN

DreamCoder: Results

» Second test. More creative domains: generating images, plans, and text.

« Programs to learn for towers building;:

| | m_n__nnnn_Jme

il

i 1 .
i ﬂ il
ot i n ik, o _EL

» Some learned parametric ‘shape concepts’ and higher order function:

arch(h) | H ﬂ |r| pyramid(h)

= ¥ § § momp MM

bridge(w,

wall(w, h) h)

:

UNIVERSITAT
TUBINGEN

DreamCoder: Results

% Test Solved % Test Solved

% Test Solved

100 -
80 -
60 -
40 -
20 -

100 -
80 -
60 -
40 -
20 -

100 -
80 -
60 -
40 -
20 -

Text editing

U T T T T T L

10
List processing

15

T T 1T 17T 17 77 T 7T

Tower building

T LI

15

L

0

T T T T T T

5 10

L

15

Wake/Sleep Cycles

LOGO Graphics

100 -
80 -

40 -
20 -

6 T T Ll E_l) lllol Ll Ll l]:SI Ll T T
Symbolic Regression

log probability

L L T T 77 T T 7T 7177 LI B B

Generative text modeling

LI B I R B B D B B N D DN BN N BN B BN R B |

0 5 10 15
Wake/Sleep Cycles

EBERHARD KARLS

UNIVERSITAT
TUBINGEN

UNIVERSITAT
TUBINGEN

DreamCoder: Results

 Third set of tasks: Learning whole languages!

* Question: Can DreamCoder solve complex problems starting just with
super general operations and progressively building complex concepts?

 Task: Learn a set of 60 physical laws and mathematical identities from
quantitative measurements
 E.g. mechanics, electromagnetism

« After 8 cycles of wake/sleep, DreamCoder learns 93% of the rules
» First learning conceps like inner product, vector sum, and norm
« Then learns complex like the inverse square law

* Finally uses these to formulate the actual laws like Newton’s laws of
gravitation and Coulomb’s law of electrostatic force

DreamCoder: Results

Initial
Primitives

map
zip
cons

empty

cdr

power

fold

car

Learned Library of Concepts

=5 2

subtract vectors

add many vectors

add vectors add-many-vectors (vs) = (A (vs) (fold (cdr
vs) (car vs) (A (u v) (add-vectors u v))))

vl*2

|2
itz

scale vector

inverse square

inverse-square(a, b, v) = (A (a b v)
(scale-vector (ab/|v]|”2 (sqrt
(ab/|v|”2 b b v)) av) v))

sum components

ab—c : -
dot-product(u,v) = (A (u v) period(a, b) = (A (a b)

(2a/b (sqrt (/ b a)) pi))

ab-cd (sum-components (zip v u (A (a
1 b) (* b a))))) = (A (uv)
= (fold (zipvu (A (ab) (*b
a))) 0 (A (xy) (+xy))))

reciprocal

EBERHARD KARLS

UNIVERSITAT
TUBINGEN

Discovered Physics Equations

Newton'’s Second Law Parallel Resistors

L1, 1\7"
a= EZiFi Rtotar = (ZiR_i)

(scale-vector(reciprocal m) (reciprocal (sum-components

(add-many-vectors Fs)) (map (A(r) (reciprocal r))
Rs)))

Work Force in a Magnetic

i = F*a Field

(dot-product F d) |F| = q|¥ x B|

(* g (ab-cd v_x b_y v_y b_x))

Kinetic Energy Coulomb’s Law
1 =>

KE = ~m|?|? o ey
2 I — 712

A
(ab/2 m (Iv]"2 v)) (inverse-square q_1 q_2

(subtract-vectors r_1 r_2))

(AN (xy zu) (map (A (v) (* (/

(* (power (/ (* x x) (fold (zip

zu (A (wa) (-wa)))) o (n (b

i; E: i*l?)?)) (Cf))l)d) ((/, (* 1 Solution to Coulomb’s
y 0 zip z u . .

(A (de) (-de)) o (n(fg Law ifexpressedin

(+ (* £) g))) v)) (zip z u initial primitives

(A (h i) (- hi)))))

DreamCoder: Results

 They also did it with recursive algorithms:

Initial
Primitives
Y
combinator
cons
cdr fold(xs,f,x0) =
(if (nil? xs) x0@
nil (f (fold (cdr xs)
f x0) (car xs)))
if
nil?
+
unfold(x,g,f,p) =
0 (if (p x) nil
(cons (f x)
1 (unfold (g x)
g fp)))

(M (AB) (Y (YO (A (zu (if (=u (YA (W (if (nil?2 w) © (+ 1 (v (cdr w))))))) nil (cons u (z (+ u 1)))))) (A (a b) (if (nil?
b) nil (cons (- (car (Y (Y ® (A (c d) (if (= d (car b)) nil (cons d (c
(car (Y (Y @ (A (g h) (if (= h (car b)) nil (cons h (g (+ h 1)))))) (A (i j) (if (nil? j) B (cdr (i (cdr 3)))))))) (a (cdr b)))))))

Learned Library of Concepts

map(xs,f) = (fold xs (A (zs
x) (cons (f x) zs)) nil)

length

length(xs) = (fold xs
A (nx) (+1n)) 0)

filter(p,xs) = (fold xs (A (zs Xx)
(if (p x) zs (cons x zs))) nil)

count_to(f,x,y) =
(unfold x (A (u) (f u
1)) (A (2) 2) (=V¥))

unfold_list

unfold list(f,xs,p) = (unfold xs
(A (u) (f (cdr u))) car p)

index(n,xs) = (car
(fold (range n) (A (u
v) (cdr u)) xs))

range

range(n) = (count_to + Q)

count_down

count_down(f,n) =
(count_to - (f n) n)

zip(xs,f,ys) = (map
(range (length xs))
(A (n) (f (index n

ys) (index n xs))))

(+d 1)))))) (A (e f) (if (nil? f) A (cdr (e (cdr)))))))

EBERHARD KARLS

UNIVERSITAT
TUBINGEN

Discovered Recursive Programming Algorithms

Stutter
[(HE] - [EEEN]
[HENE] - EEEEEN]

(fold A (A (u v) (cons
v (cons v u))) nil)

Take every other
[NEEN] _, [HN]
[(NEEEEN] _, [HEN]

(unfold 1list cdr A nil?)

List lengths

[(MEm], [®]] - [3 1]
[(mm], [], [®M]] - [2 0 1]
(map A length)

List differences

[1 8 2], [05 1] - [1 3 1]
[2 3 6], [1 2 4] - [1 1 2]
(zip A - B)

Solution to 1ist
differences if expressed in
initial primitives

UNIVERSITAT
TUBINGEN

DreamCoder: Results

 Overall, I find DreamCoder pretty mindblowing

* All the code is available online and you can get it running on your machine
in about half a day

 There is much more to explore in this direction!

UNIVERSITAT
TUBINGEN

Future directions: The Child as a Hacker

* Rule et al. 2020, The Child as a Hacker.
* Citing the paper:
» Programs provide our best general-purpose representations for human

knowledge, inference, and planning; human learning is thus increasingly
modeled as program induction, learning programs from data.

« Many formal models of learning as program induction reduce to a stochastic
search for concise descriptions of data. Actual human programmers and
learners are significantly more complex, using many processes to optimize
complex and frequently changing objectives.

» The goals and activities of hacking, making code better along many
dimensions through an open-ended and internally motivated set of goals and
activities, are helping to inspire better models of human learning and
cognitive development

Future directions: The Child as a Hacker

« The main point is that we use
algorithmic knowledge in all sorts of

domains.

* All of these could be modelled in an

LoT framework.

Logic

Mathematics

Natural language
Sense data
Computer languages
Scientific theories
Operating procedures
Games and sports
Norms and mores
Legal codes
Religious systems
Kinship

Mundane chores
Intuitive theories
Domain theories

Art

3

EBERHARD KARLS

UNIVERSITAT
TUBINGEN

First-order, modal, deontic logic
Number systems, geometry, calculus
Morphology, syntax, number grammars
Audio, images, video, haptics

C, Lisp, Haskell, Prolog, IMTEX
Relativity, game theory, natural selection
Robert’s rules, bylaws, checklists

Go, football, 8 queens, juggling, Lego
Class systems, social cliques, taboos
Constitutions, contracts, tax law
Monastic orders, vows, rites and rituals
Genealogies, clans/moieties, family trees
Knotting ties, making beds, mowing lawns
Physics, biology, theory of mind
Cooking, lockpicking, architecture

Music, dance, origami, color spaces

Future directions: The Child as a Hacker

» The main conceptual move in

Accurate
this paper is that the kind of T
pLoT theory we have looked at ==
in this course focused on just Eticiont
one dimension Novel
Useful
 But actual program Modular
development considers many —
dimensions to optimize! i
* Some examples: —
Clear
Clever
Fun

3

EBERHARD KARLS

UNIVERSITAT
TUBINGEN

Demonstrates mastery of the problem; inaccurate solutions hardly count as solutions at all
Reduces the chance of implementation errors and the cost to discover and store a solution
Optimizes the effort of producing a solution, enabling the hacker to solve more problems
Produces results quickly, allowing more problems to be solved per unit time

Respects limits in time, computation, storage space, and programmer energy

Solves a problem unlike previously solved problems, introducing new abilities to the codebase
Solves a problem of high utility

Decomposes a system at its semantic joints; parts can be optimized and reused independently
Solves many problems with one solution, eliminating the cost of storing distinct solutions
Degrades gracefully, recovers from errors, and accepts many input formats

Reduces available resources to better understand some limit of the problem space
Emphasizes symmetry and minimalism common among mature solutions

Avoids idiosyncrasies of the machine on which it was implemented and can be easily shared
Reveals code’s core structure to suggest further improvements; is easier to learmn and explain
Solves a problem in an unexpected way

Optimizes for the pleasure of producing a solution

Future directions: The Child as a Hacker

EBERHARD KARLS

UNIVERSITAT
TUBINGEN

« Moreover, there’s many strategies to building the program, which weren’t
captured by our inference algorithm.

» Some examples:

Tune parameters
Add functions
Extract functions
Test and debug
Handle errors
Profile

Refactor

Add types

Write libraries

Invent languages

Adjust constants in code to optimize an objective function.

Write new procedures for the codebase, increasing its overall abilities by making new computations available for reuse.

Move existing code into its own named procedure to centrally define an already common computation.

Execute code to verify that it behaves as expected and fix problems that arise. Accumulating tests over time increases code’s trustworthiness.
Recognize and recover from errors rather than failing before completion, thereby increasing robustness.

Observe a program’s resource use as it runs to identify inefficiencies for further scrutiny.

Restructure code without changing the semantics of the computations performed (e.g.,remove dead code, reorder statements).

Add code explicitly describing a program’s semantics, so syntax better reflects semantics and supports automated reasoning about behavior.

Create a collection of related representations and procedures that serve as a toolkit for solving an entire family of problems.

Create new languages tuned to particular domains (e.g.,HTML, SQL, AT X) or approaches to problem solving (e.g.,Prolog, C, Scheme).

:

EBERHARD KARLS

UNIVERSITAT
TUBINGEN

Future directions: The Child as a Hacker

How might traditional accounts of cognitive development be usefully reinterpreted through the lens
of hacking? How can core knowledge be mapped to an initial codebase? How can domain-specific knowledge be
modeled as code libraries? What chains of revisions develop these libraries? How do libraries interact with each
other? Which hacking techniques are attested in children and when do they appear? Which values? How
can individual learning episodes be interpreted as improving code?

What are children’s algorithmic abilities? How do they learn in the absence of new data? What aspects of learning are
data-insensitive? How do they extract information from richly structured data? What kinds of nonlocal
transformations do we see? Do children ever find more complex theories before finding simpler ones? How do
children move around the immense space of computationally expressive hypotheses?

How do humans program? What techniques do they use? What do they value in good code? How do they search
the space of programs? Does the use of many techniques make search more effective?

How can the discoveries of computer science best inform models of human cognition? For example, what remains to
be learned about human cognition from the study of compilers, type systems, or databases? How can we use the
vocabulary of programming and programming languages to more precisely characterize the representational
resources supporting human cognition? Are things like variable binding, symbolic pattern matching, or
continuations cognitively primitive? If so, are they generally available or used only for specific domains? How
does the mind integrate symbolic/discrete and statistical/continuous information during learning? What kinds of
goals do children have in learning? What improvements do they inspire? How do they move around the space of
goals? What data structures does this movement suggest for goal management?

UNIVERSITAT

The end ! TUBINGEN

 And that’s it for the lectures this course folks!

 Let me know when you want to discuss topics for the final project.
* I'll be out of Tubingen until the end of August

« I'll still see you on Wednesday
« We'll implement another model from scratch

* Any questions?
I was asked to let you write evaluations during class time

