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Where are we?

• We have finally reached the last week!

• We have covered quite a lot of stuff:

• The philosophical background on the Language of Thought (Fodor)

• Some technical background

• Formal grammars

• Compositional semantics with lambda calculus

• Bayesian inference and MCMC for approximating a posterior

• The probabilistic Language of Thought

• The LOTlib3 library

• Some applications to various conceptual domains



Where are we?

• Today let’s have a look at two things:

• What the state of the art is (DreamCoder)

• Where the people in the field see it going (The Child as a Hacker)

• In the lab this week we will again write together a little inference script for 
a conceptual domain

• I was thinking we could do a little model to fit a function with some 
simple operations

• So we might get some input-output combos ( [0, 0.3], [0.4, -0.1], … ) 
and we have to infer an expression that encodes them (e.g., y = log(x)-
2)



DreamCoder: The general idea

• The problem: Program Induction / pLoT is not scalable compared to 
neural network systems!

• Why do you think that is?

• Program Induction systems need to start with a domain specific language.

• This is partially because if we start with domain general primitives the 
programs we need to solve practical problems become so long that they 
can’t be inferred

• Combinatorial /discrete nature of the search space

• The space of programs isn’t continuous, so we can’t use our best 
algorithms (e.g., gradient descent or Hamiltonian monte carlo)

• DreamCoder attempts to solve both of these problems!



DreamCoder: The general idea

Two related ideas:

• Instead of a fixed list of primitives, grow new concepts, so that the inferred 
programs are shorter!

• This library of new learned concepts will depend on the specific 
domain, so that DreamCoder grows a domain-specific language.

• Learn implicit procedural knowledge

• This means that observing the object to be inferred gives us some ideas 
about which concepts we are going to need and how

• This is what we do when we actual program, and it relies on intuition, 
and so the most natural way is to use a neural networks that goes from 
the data to the probability of each substitution rule!



DreamCoder: Learning

• Various things need to be 
done:

• How do we grow new 
concepts?

• How and when is the 
ANN trained?

• Solution: Wake/Sleep 
Program Learning



DreamCoder: Results

• First test. Two classic domains: List processing and text editing (218 problems)

• In both domains, the program defines a function 

• DreamCoder starts with a domain-general functional basis

• Each round of abstraction built on concepts discovered in earlier sleep cycles

• E.g., first learns filter, then uses it to learn to take the maximum element of a 
list, then uses that routine to learn a new library routine for extracting the nth 
largest element of a list, which it finally uses to sort lists of numbers

• DreamCoder solves 84.3% of the problems with 1 hour & 8 CPUs per problem. 

• The best-performing synthesizer in this competition (CVC4) solved 82.4% of 
the problems. 

• CVC4 had a different hand-engineered library of primitives for each text 
editing problem!



DreamCoder: Results

• Second test. More creative domains: generating images, plans, and text.

• Programs to learn (30 out of 160) for LOGO shapes task:

• Some learned parametric ‘shape concepts’ and higher order function:



DreamCoder: Results

• Second test. More creative domains: generating images, plans, and text.

• Programs to learn for towers building:

• Some learned parametric ‘shape concepts’ and higher order function:



DreamCoder: Results



DreamCoder: Results

• Third set of tasks: Learning whole languages!

• Question: Can DreamCoder solve complex problems starting just with 
super general operations and progressively building complex concepts?

• Task: Learn a set of 60 physical laws and mathematical identities from 
quantitative measurements 

• E.g. mechanics, electromagnetism

• After 8 cycles of wake/sleep, DreamCoder learns 93% of the rules

• First learning conceps like inner product, vector sum, and norm

• Then learns complex like the inverse square law

• Finally uses these to formulate the actual laws like Newton’s laws of 
gravitation and Coulomb’s law of electrostatic force



DreamCoder: Results



DreamCoder: Results

• They also did it with recursive algorithms:



DreamCoder: Results

• Overall, I find DreamCoder pretty mindblowing

• All the code is available online and you can get it running on your machine 
in about half a day

• There is much more to explore in this direction!



Future directions: The Child as a Hacker

• Rule et al. 2020, The Child as a Hacker. 

• Citing the paper:
• Programs provide our best general-purpose representations for human 

knowledge, inference, and planning; human learning is thus increasingly 
modeled as program induction, learning programs from data. 

• Many formal models of learning as program induction reduce to a stochastic 
search for concise descriptions of data. Actual human programmers and 
learners are significantly more complex, using many processes to optimize 
complex and frequently changing objectives. 

• The goals and activities of hacking, making code better along many 
dimensions through an open-ended and internally motivated set of goals and 
activities, are helping to inspire better models of human learning and 
cognitive development



Future directions: The Child as a Hacker

• The main point is that we use 
algorithmic knowledge in all sorts of 
domains.

• All of these could be modelled in an
LoT framework.



Future directions: The Child as a Hacker

• The main conceptual move in 
this paper is that the kind of 
pLoT theory we have looked at 
in this course focused on just 
one dimension

• But actual program 
development considers many 
dimensions to optimize!

• Some examples:



Future directions: The Child as a Hacker

• Moreover, there’s many strategies to building the program, which weren’t 
captured by our inference algorithm.

• Some examples:



Future directions: The Child as a Hacker

• How might traditional accounts of cognitive development be usefully reinterpreted through the lens 
of hacking? How can core knowledge be mapped to an initial codebase? How can domain-specific knowledge be 
modeled as code libraries? What chains of revisions develop these libraries? How do libraries interact with each 
other? Which hacking techniques are attested in children and when do they appear? Which values? How 
can individual learning episodes be interpreted as improving code? 

• What are children’s algorithmic abilities? How do they learn in the absence of new data? What aspects of learning are 
data-insensitive? How do they extract information from richly structured data? What kinds of nonlocal 
transformations do we see? Do children ever find more complex theories before finding simpler ones? How do 
children move around the immense space of computationally expressive hypotheses?

• How do humans program? What techniques do they use? What do they value in good code? How do they search 
the space of programs? Does the use of many techniques make search more effective? 

• How can the discoveries of computer science best inform models of human cognition? For example, what remains to 
be learned about human cognition from the study of compilers, type systems, or databases? How can we use the 
vocabulary of programming and programming languages to more precisely characterize the representational 
resources supporting human cognition? Are things like variable binding, symbolic pattern matching, or 
continuations cognitively primitive? If so, are they generally available or used only for specific domains? How 
does the mind integrate symbolic/discrete and statistical/continuous information during learning? What kinds of 
goals do children have in learning? What improvements do they inspire? How do they move around the space of 
goals? What data structures does this movement suggest for goal management?



The end!

• And that’s it for the lectures this course folks!

• Let me know when you want to discuss topics for the final project.

• I’ll be out of Tubingen until the end of August

• I’ll still see you on Wednesday

• We’ll implement another model from scratch

• Any questions?

• I was asked to let you write evaluations during class time


