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Where are we?

 Last week, we have seen two applications of the idea of pLoT to new
conceptual domains: handwritten digits and kinship systems.

 This week, we’ll look at a few more applications.
« It’ll be a bit of a whirlwind!

« We will look at:
* Learning numerals in an LoT
 Learning abstract visual concepts in an LoT
« Learning sequences in an LoT
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Learning Numerals with an LoT

 Piantadosi et al (2012), Bootstrapping in a language of thought: A formal
model of numerical concept learning.

 Children exhibit very regular patterns in the way they learn number
systems.

 The first learn to recognize small sets of size 1, then 2, then 3, etc.

 In Carey’s formulation, early number-word meanings are represented using mental models of
small sets. For instance two-knowers might have a mental model of “one” as {X} and “two” as
{X, X}. These representations rely on children’s ability for enriched parallel individuation, a
representational capacity that Le Corre and Carey (2007) argue can individuate objects,
manipulate sets, and compare sets using one-to-one correspondence. Subset-knowers can, for
instance, check if “two” applies to a set S by seeing if S can be put in one-to-one
correspondence with their mental model of two, {X, X}

« Then at about 3;6 they learn the full recursive system (Cardinal Principal
learners)

» This is a qualitative jump rather than continuous smooth progress.
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Learning Numerals with an LoT

* Let’s see if we can reproduce this qualitative conceptual jump with an LoT!

» We have at least three choices for how to set up the LoT. Each sentence in
the LoT could be:
A function from a number word to a predicate of sets
A function from a set to a number word
A function that constructs a set from the objects in the situation

* Children can do all these three things, and there is no clear empirical
evidence one way or the other.

* In the paper, they go the second way: from a set to a number word.
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Learning Numerals with an LoT

e Rules in the LoT:

Functions mapping sets to truth values

(singleton? X)
(doubleton? X)
(tripleton? X)

Functions on sets
(set-difference X Y)
(union X'Y)
(intersection X Y)
(select X)

Logical functions
(and P Q)

(or PQ)

(not P)

(f PXY)

Functions on the counting routine

(next W)
(prev W)
(equal-word? WV)

Recursion
(LS)

Returns true iff the set X has exactly one element
Returns true iff the set X has exactly two elements
Returns true iff the set X has exactly three elements

Returns the set that results from removing Y from X
Returns the union of sets X and Y

Returns the intersect of sets X and Y

Returns a set containing a single element from X

Returns TRUE if P and Q are both true
Returns TRUE if either P or Q is true
Returns TRUE iff P is false

Returns X iff P is true, Y otherwise

Returns the word after W in the counting routine
Returns the word before W in the counting routine
Returns TRUE if W and V are the same word

Returns the result of evaluating the entire current lambda expression on set S
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« Recursion is the only one that’s a bit complicated. What do you think the

following does?

One-knower

A S . (if (singleton? S)
“one”
undef)

Three-knower

A S . (if (singleton? S)
“one”
(if (doubleton? S)
“two”
(if (tripleton? S)
“three”
undef))

2 S - (if (singleton? S)

“OTIE”

(next (L (select S)))).

Two-knower

A S . (if (singleton? S)
“one”
(if (doubleton? S)
“two”

undef))
CP-knower
A S . (if (singleton? S)

“one”
(next (L (set-difference S
(select S)))))

Singular-Plural

A S . (if (singleton? S)
“one”
“two”)

2-not-1-knower

A S . (if (doubleton? S)
“two”
undef)

Mod-5

A S . (if (or (singleton? S)
(equal-word? (L (set-difference S)

(select S))
“five™))
“one”
(next (L (set-difference S
(select S)))))

2N-knower

A S . (if (singleton? S)
“one”
(next (next (L (set-difference S (select 5))))))
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Learning Numerals with an LoT

 The likelihood function is pretty typical:
* First, a set of objects is chosen from the universe of object, e.g. ‘cats’
« Second, the hypothesis is evaluated on the set.
 This can result either in a number word or ‘undef’
o If the result is ‘undef’, a random number word is produced
o If the result is a number word, the word is produced with probability «
and with 1 — a« a random word is picked.

 Resulting likelihood function:

N if L yields undef
P(wilti,ci,L) =< o+ (1 — )4 if L yields w;
(1-

o) L if L does not yield w;
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Learning Numerals with an LoT

« The model also penalizes recursive functions with a parameter y
 Results look strikingly like human learning patterns:
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 In particular, note all the hypotheses that are considered and then
disregarded!
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» The same LoT can also learn things like singular/plural morphology:

oooooooooooo

« And mod-n systems (e.g. days of the week)
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Visual Concept Learning in an LoT

 Overlan et al (2017), Learning abstract visual concepts via probabilistic
program induction in a Language of Thought

 Last week, we have seen a model that can learn and do various other things
with handwritten characters.

* Now let’s see if we can work with something else in the visual modality,
namely the structure of 3-d objects.

« Suppose we have the following primitive objects, and we can combine
them in various ways:

Wa40%
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Visual Concept Learning in an LoT

 For instance, we can produce the following categories:

d—e—d e—a-e a—d—a

a—e—e a—d—d a—-c—oC

» Note that each category identifies a class of objects!
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Visual Concept Learning in an LoT
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Visual Concept Learning in an LoT

« What could a grammar for this look like?

START — let <BV_PART>:z; = FIRST _PART; EXPR
EXPR — let <BV_PART>:z,, = PART; EXPR
— STRING
STRING — BV_PART
— STRING CONNECT STRING

— {STRING}
FIRST _PART — sample(FIRST_SET) I — Psingle
— SINGLE Dsingle
PART — BV_PART (1 — Psingie) /2
— sample (SET) (1 = Paingle) /2
— SINGLE Dsingle
FIRST_SET — X L = Piminus
— minus (FIRST_SET, FIRST_PART) Pminus
SET — X 1 — Pminus
— minus (SET, BV_PART) Prminus

CONNECT — " | L | ' | ‘=

SINGLE — ‘a’ | e
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Visual Concept Learning in an LoT

- Example of a derivation and some categories:

START
!
EXPR
|

let z; = EXPR;

7
<

sample (SET)
|

v

let X1 = sample(X)
let X, = sample(X — X;)
EXPR output X; — X2 — Xj
\\‘
let x, = EXPR; EXPR
x// \\.
sample (SET) STR
l N\
minus (SET,PART) concat (STR—STR)
/ \ / N
' - 4 N
bD T PART concat(STR—STR)
l ‘/,/ \\\
PART

T PART
| |

Ty x

ABA

let x4
let x9
output

ABC

let x4
let a9
let a3
output

sample (XR)
sample(Xp — x1)
T — To — I

sample (¥)
sample (¥ — x1)
sample (¥ — 19 — x1)
Iy — Ty — I

BB

let x4
let x9
output

Ring
let x4

let x9
output
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sample (X))
= Ca:'
To —» L1 — I

sample(XR)
sample (X — 21)
xy = (w2 Tay) L ay) =
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ABA Exemplars: d—»e—d, e—a—e, a—d—a
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Sequence Learning in an LoT

 Planton et al (2021), A theory of memory for binary sequences: Evidence
for a mental compression algorithm in humans

 The scope here is to understand how humans deal with binary sequences,
i.e. sequences composed of only two elements.
* For instance, {0,1}*
 But not that it doesn’t need to be symbols. E.g. it can be two pitches.

 Much literature has been devoted to understand how humans learn these.

 Usually, the general strategy is to find a mechanism where strings can be
encoded, which explains how long strings can be learned, which would be
impossible with pure memorization.
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Sequence Learning in an LoT

* In this case, we'll use an LoT where each sentence can encode a binary series. For
Imstance:

LoT program expression :
QQB BQBQ BQQB BQBQB LoT complexity = 12
* LoT:

 Staying (“+07)
« Moving to the other item (here denoted ‘b’)
« Repetition (“*n”, where n is any number),
 Possibly with a variation in the starting point
* Denoted by <x> where x is an elementary instruction, either +0 or b
- Embedding of expressions is represented by brackets (“[. . ..]") and

b

concatenation by commas (“,”).
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Sequence Learning in an LoT

* ‘Sequence violation’ experimental paradigm:

B S0ms 500 ms IS| Inter-trial time
tone 600 ms
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« The basic hypothesis was that, for equal sequence length, error rate and
response time in violation detection would increase with sequence
complexity.
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* This is the results of the first
experiment
i PartiCipantS Wel'e aSkEd A Complexity rating task B Deviant detection task
subjective complexity (left) *
* And to identify deviations in: .
* Sequence deviants z | -
* A note is replaces with the : 7
other note £ °] -
« Superdeviant ;
A new note is introduced .*~ L
° LISAS: Linear Integrated LoT complexity LoT complexity

Speed-Accuracy Score
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Summary

 This week, we saw some other applications of the pLoT idea
* First, we saw a model of numeral acquisition

« Then, a model of learning visual concepts (categories of 3-d objects)
* This could easily be extended, if you're into 3-d rendering
 Possible final project?

 Finally, we saw a model of learning binary sequences of tones

e In the lab this week, we’ll try to implement a model from scratch
« I am not going to prepare beforehand so we can all write it together

- Next week is the last week, so the lecture is going to be a review of what
we’ve done, with some concluding remarks on the general project.

* In the lab next week we’ll implement another model.



