

Probabilistic program induction of symbols

Or: More complex models!

- The Language of Thought: computational cognitive science approaches to category learning
- Who: Fausto Carcassi
- When: Sommer semester 2022

Where are we?

- Last week we have seen a very simple application of the LoT idea to categorization with a logical language.
- We have also learned more about the LOTlib3 library
- However, we have not seen the full power of LoT yet compared to e.g., deep learning methods.
- Today we'll have a look at what we can do with serious LoT models!
- The paper we'll look at (Lake et al (2015), *Human-level concept learning through probabilistic program induction*) is a bit old now, but nonetheless very nice.
- If there is time left, we'll also have a brief look at the paper on acquisition of kinship terms.

- Humans can learn a huge amount from a single instance. For instance, consider the following object:
 - Based on just this one instance, we can do loads.
 - E.g., classify new examples:

- Humans can learn a huge amount from a single instance. For instance, consider the following object:
 - Based on just this one instance, we can do loads.
 - E.g., generate new examples:

- Humans can learn a huge amount from a single instance. For instance, consider the following object:
 - Based on just this one instance, we can do loads.
 - E.g., parse the object into parts:

- Humans can learn a huge amount from a single instance. For instance, consider the following object:
 - Based on just this one instance, we can do loads.
 - E.g., generate new concepts:

Cognitive problem

- There is a *cognitive* question of how humans are capable of learning such powerful generalizations from such sparse data.
- Typical machine learning algorithms only do one of these, and they usually require more data!
- In the past weeks we've been learning a new learning algorithm, so let's see how it performs with respect to these challenges.

Program induction

- In order to see what the paper is going, we need a slightly different framing from what we've seen this far.
- Consider the following problem:
 - We have some input-output combos from an unknown computer program
 - We want to infer a computer program that gives those input-outputs.
- In principle, there's many ways of doing this, e.g., genetic algorithms
- You can probably see how this is related to the stuff we've seen this far: we can interpret inference in an LoT as a case of program induction.

Some fundamental ideas

The paper has very many ideas, but the main ones are to bring together:

- Compositionality
 - Programs are build compositionally like we have seen with pLoT
- Causality
 - The programs capture the causal structure of how the images are generated
- Learning-to-learn
 - In addition to the things we've already learned, this model build a *hierarchical* prior, where experiences with previous concepts change the probability of new ones

Bayesian Program Learning

- Bayesian Program Learning is introduced in Lake et al
- It can learn visual concepts from a single example and generalize in a way very similar to how humans do it
- In the model, concepts are represented by little computer programs that define procedures for drawing images, generated as follows in an LoT:

Bayesian Program Learning

• Once some character types are generated in the LoT, a specific instance of a *drawing* of the characters can also be generated as follows:

The plan

- The basic idea of the paper is to test Bayesian Program Learning with 5 tasks, and compare its performance with other algorithms as well as humans.
- The tasks involve the Omniglot dataset, which collects multiple examples of 1625 written characters from 50 different writing systems.
 - This includes both images and *pen strokes*

1. One-shot classification of characters:

ಅ	Ça.	ബ	പ	ፚ
ભુ	ಖ	Ţ	പ	ಝ
র্ন্ব	Ō	63	ී	ದೆ
ಸ	സ	ಲ	മ്	್ರ

2. Generating new examples:

Α	BPL	BPL Lesion (no compositionality)	BPL Lesion (no type-level learning-to-learn)	BPL Lesion (no token-level learning-to-learn)	Hierarchical Deep
	$M \rightarrow M$	\overline{N} \overline{N}	$\overline{\mathcal{M}}$ $\overline{\mathcal{M}}$	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	ম ম
$\overline{\mathcal{N}}$	M M	$\overline{\mathcal{N}}$ $\overline{\mathcal{N}}$		MM	ফ্র ম্ব
	MM	$\overline{\mathcal{M}}$ $\overline{\mathcal{M}}$	\overline{M} \overline{M}	M ~ M	ন ম ম
	€€€	ÉCE	e e e	€ € €	666
£	€€€	€€€	E E E	a h c	666
	€ €	€ € €	£ € €	or c or	666
	ह छ ह	र र ४	ह ह ह	e e t	ଷ ଖ୍ର ଷ
र	१ म म	र्ठ ठॅ	ままる	8 8 8	5 8 8
	ह ह	हे हे	र ह र	8 8 8	8 8 8

3. Generating new concepts:

Example characters

Ħ

T

ii)

4. Generating new concepts (from type):

ナ	6	h	ф	0
M	H	U	Λ	4

M	0	ഖ	20	w
S	ഭ	ല	೨	y

New machine-generated characters in each alphabet

ス TT H FIJ N C -> r F 5 F 7 J 5 F D -2 æ 5 5 T T T ¥ T

11	Ť	1	A	à	N
S	0,	t	T	ļ	C
ľ	とう	F	1	5	T
R	2	12	ł	2	T
7	2	2	0	U	4
E	2		L	Y,	9

ß	J	P,	2	So	z
2	3	5	2	S	3
S	re	6	പം	3	þ
β	n	B	0	3	مد
2	لم	BA	Ø	പ	Ø
R	N	ಲಾ	g	SJ	9

5. Generating new concepts (unconstrained):

(Machines are 2; 1; 1; 2)

Human or Machine?

Summary of results

Future directions?

- A natural generalization is to implement similar models for other cultural phenomena, like dances or gestures.
- Another direction is to use this model to study acquisition of characters in the alphabet.
- What else do you think could be done with this model?

Kinships terms

- Let's move onto Mollica & Piantadosi (2021), *Logical word learning: The case of kinship*.
- Kinship terms are word used to refer to where someone is in a family with respect to someone else.
- There is rich logical structure in kinship terms, since they semantically express complex relations.
- This is exactly the kind of conceptual domain where LoT models shine.
- So let's look at the way the Mollica paper sets up the LoT model!

Kinships terms – Data

A single datapoint is a collection of four objects:

- A **speaker** who uses the kinship word
- A **word** (used by the speaker)
- A **referent** identified by the word
- A **context**, which consists of a family tree

From this kind of datapoint, the child has to infer the meaning of kinship terms!

Kinships terms – Hypothesis space

- A hypothesis is a function that characterizes a set of people in a family from the point of view of the speaker.
- The model considers 37 possible people (here numbered by the rank of number of interactions with the speaker):

Kinships terms – PCFG induced prior

The PCFG contains the following primitives:

 $SET \xrightarrow{1} union(SET,SET)$ $SET \xrightarrow{1} intersection(SET,SET)$ $SET \xrightarrow{1} difference(SET,SET)$ $SET \xrightarrow{1} complement(SET)$

 $SET \xrightarrow{1} parent(SET)$ $SET \xrightarrow{1} child(SET)$ $SET \xrightarrow{1} lateral(SET)$ $SET \xrightarrow{1} coreside(SET)$

SET $\xrightarrow{1}$ generation0(SET) SET $\xrightarrow{1}$ generation1(SET) SET $\xrightarrow{1}$ generation2(SET) SET $\xrightarrow{\frac{1}{37}}$ concreteReferent $SET \xrightarrow{1} male(SET)$ $SET \xrightarrow{1} female(SET)$ $SET \xrightarrow{1} sameGender(SET)$ $SET \xrightarrow{1} all \qquad SET \xrightarrow{10} X$

Prior probabilities are calculated as usual! E.g.,

English	aunt	PZ, PGW	female(difference(generation1(X), parent(X)))
	brother	В	male(child(parent(X)))
	cousin	PGC, PGEC	difference(generation0(X), child(parent(X)))
	father	F	male(parent(X))
	grandma	PM	female(parent(parent(X)))
	grandpa	PF	male(parent(parent(X)))
	mother	М	female(parent(X))
	sister	Ζ	female(child(parent(X)))
	uncle	PB, PGH	<pre>male(difference(generation1(X), parent(X)))</pre>

Kinships terms – Likelihood function

- The data is generated in one of two ways:
- With probability α , the data is generated by the hypothesis (i.e. one of the people is sampled)
- With probability 1α , the data is generated randomly.
- This produces the following likelihood function:

$$P(d|h) = \delta_{d \in h} \cdot \frac{\alpha}{|h|} + \frac{1 - \alpha}{|\mathcal{D}|}$$

Learning kinship systems in some langs

Main properties of the model

- The model shows a preference for concrete reference (single individuals) over classes of individuals when there are few datapoints.
 - This is consistent with what children do!
- The model predicts *overextension*
 - The phenomenon where children learn a larger category that includes more individuals than the word's true reference.
- Characteristic-to-defining shift
 - A pattern in overextension where young children over-extend with characteristic features ("robbers are mean") vs defining features ("robbers steal things").

Main properties of the model

• Order of acquisition of model and children mostly align:

Empirical Order	Word	Original H&C Order & Formalization	Log Prior	CHILDES Freq.
1	mother	Level I: [X PARENT Y][FEMALE]	-9.457	6812
1	father	Level I: [X PARENT Y][MALE]	-9.457	3605
2	brother	Level III: [X CHILD A][A PARENT Y][MALE]	-13.146	41
2	sister	Level III: [X CHILD A][A PARENT Y][FEMALE]	-13.146	89
3	grandma	Level II: [X PARENT A][A PARENT Y][FEMALE]	-13.146	526
3	grandpa	Level II: [X PARENT A][A PARENT Y][MALE]	-13.146	199
4	aunt	Level IV: [X SIB A][A PARENT Y][FEMALE]	-19.320	97
4	uncle	Level IV: [X SIB A][A PARENT Y][MALE]	-19.320	68
4	cousin	Level IV: [X CHILD A][A SIB B][B PARENT Y]	-18.627	14

• The paper contains much more, including experimental results, but we do not have time to go through it all.

Summary

- Today, we have seen two new applications of the LoT, in the guise of *program induction*: learning a computer program in a domain-specific language from input/output relations.
- In the lab this week, we will see how to implement a category learning model in LOTlib3. If there's time left we'll also try to expand it to make it do more powerful stuff.
- Next week, we will see how to apply pLoT to other domains.