Computational approaches to the explanation of universal properties of meaning
 Lecture 2

Fausto Carcassi and Jakub Szymanik

Outline

(1) Introduction
(2) Quantifiers

- RNNs + Encoding
- Applications
(3) Other Cases
- Responsive Fredicates
- Color Terms

Recap

Yesterday:

- Formulating the problem of semantic universals
- Providing various examples

Today:

- Explain universals via learnability

Recap

Yesterday:

- Formulating the problem of semantic universals
- Providing various examples

Today:

- Explain universals via learnability

Explaining Universals

Natural Question
Why do the attested universals hold?

Explaining Universals

Natural Question

Why do the attested universals hold?
Answer 1: learnability (as fencing-in; to be rejected). (Barwise and Cooper 1981; Keenan and Stavi 1986; Szabolcsi 2010)

Explaining Universals

Natural Question

Why do the attested universals hold?
Answer 1: learnability (as fencing-in; to be rejected). (Barwise and Cooper 1981; Keenan and Stavi 1986; Szabolcsi 2010)

The universals greatly restrict the search space that a language learner must explore when learning the meanings of expressions. This makes it easier (possible?) for them to learn such meanings from relatively small input.

Compare: Poverty of the Stimulus argument for UG. (Chomsky 1980; Pullum and Scholz 2002)

Explaining Universals

Natural Question

Why do the attested universals hold?
Answer 1: learnability (as fencing-in; to be rejected). (Barwise and Cooper 1981; Keenan and Stavi 1986; Szabolcsi 2010)

Explaining Universals

Natural Question

Why do the attested universals hold?
Answer 1: learnability (as fencing-in; to be rejected). (Barwise and Cooper 1981; Keenan and Stavi 1986; Szabolcsi 2010)

Explaining Universals

Natural Question

Why do the attested universals hold?
Answer 1: learnability (as fencing-in; to be rejected). (Barwise and Cooper 1981; Keenan and Stavi 1986; Szabolcsi 2010)

Explaining Universals

Natural Question

Why do the attested universals hold?
Answer 1: learnability (as fencing-in; to be rejected). (Barwise and Cooper 1981; Keenan and Stavi 1986; Szabolcsi 2010)

Explaining Universals

Natural Question

Why do the attested universals hold?
Answer 1: learnability (as fencing-in; to be rejected). (Barwise and Cooper 1981; Keenan and Stavi 1986; Szabolcsi 2010)

Explaining Universals

Natural Question

Why do the attested universals hold?
Answer 1: learnability (as fencing-in; to be rejected). (Barwise and Cooper 1981; Keenan and Stavi 1986; Szabolcsi 2010)

Explaining Universals

Natural Question
Why do the attested universals hold?
Answer 1: learnability (as fencing-in; to be rejected). (Barwise and Cooper 1981; Keenan and Stavi 1986; Szabolcsi 2010)

Answer must in a sense be true, but:

- Restriction may not help much. (Steven T Piantadosi, Tenenbaum, and Goodman 2013)
- Does not explain which universals are attested.

Explaining Universals

Natural Question

Why do the attested universals hold?
Answer 2: learnability (as temperature). (hints in van Benthem 1987; Peters and Westerståhl 2006)

Explaining Universals

Natural Question

Why do the attested universals hold?
Answer 2: learnability (as temperature). (hints in van Benthem 1987; Peters and Westerståhl 2006)

Universals aid learnability because expressions satisfying the universals are easier to learn than those that do not.

Explaining Universals

Natural Question

Why do the attested universals hold?
Answer 2: learnability (as temperature). (hints in van Benthem 1987; Peters and Westerståhl 2006)

Outline

(1) Introduction

(2) Quantifiers

- RNNs + Encoding
- Applications
(3) Other Cases
- Responsive Predicates
- Color Terms

Outline

1) Introduction
(2) Quantifiers

- RNNs + Encoding
- Applications

3) Other Cases

- Responsive Predicates
- Color Terms

RNNs

Long Short-Term Memory Network

Hochreiter and Schmidhuber 1997

Quantifier Input

	$\in A$?	$\in B$?	x_{i}					
O_{1}	\checkmark	\checkmark	[1	0	0	0	0	1
O_{2}	\checkmark	X		1	0	0	0	1
O_{3}	x	\checkmark		0	1	0	0	1
O_{4}	\checkmark	\checkmark		0	0	0	0	
O_{5}	X	X	[0	0	0	1	0	

x_{i} : ith input to LSTM

- First four dimensions: where in the model is o_{i}
- Last two dimensions: label for quantifier. Quantifiers: 'every’ and 'some’ (two total) This example: $Q=$ 'some'
True label $y=\left[\begin{array}{ll}1 & 0\end{array}\right]$, because sentence is True.

Outline

1) Introduction
(2) Quantifiers

- RNNs + Encoding
- Applications

3 Other Cases

- Responsive Predicates
- Color Terms

Monotonicity

- Many Amsterdammers ride an omafiets to work. \Rightarrow Many Amsterdammers ride a bike to work.
So: 'many' is upward monotone.
- Few Amsterdammers ride a bike to work. \Rightarrow Few Amsterdammers ride an omafiets to work.

So: 'few' is downward monotone.

- At least 6 or at most 2 Amsterdammers ride an omafiets to work. $\nRightarrow($ and $\nLeftarrow)$ At least 6 or at most 2 Amsterdammers ride a bike to work.

So: 'at least 6 or at most 2 ' is not monotone.

Monotonicity

- Many Amsterdammers ride an omafiets to work. \Rightarrow Many Amsterdammers ride a bike to work.
So: 'many' is upward monotone.
- Few Amsterdammers ride a bike to work. \Rightarrow Few Amsterdammers ride an omafiets to work.
So: 'few' is downward monotone.
- At least 6 or at most 2 Amsterdammers ride an omafiets to work. $\nRightarrow($ and $\nLeftarrow)$ At least 6 or at most 2 Amsterdammers ride a bike to work.
So: 'at least 6 or at most 2 ' is not monotone.

Monotonicity

- Many Amsterdammers ride an omafiets to work. \Rightarrow Many Amsterdammers ride a bike to work.
So: 'many' is upward monotone.
- Few Amsterdammers ride a bike to work. \Rightarrow Few Amsterdammers ride an omafiets to work.
So: 'few' is downward monotone.
- At least 6 or at most 2 Amsterdammers ride an omafiets to work. $\nRightarrow($ and $\nLeftarrow)$ At least 6 or at most 2 Amsterdammers ride a bike to

So: 'at least 6 or at most 2 ' is not monotone.

Monotonicity

- Many Amsterdammers ride an omafiets to work. \Rightarrow Many Amsterdammers ride a bike to work.
So: 'many' is upward monotone.
- Few Amsterdammers ride a bike to work.
\Rightarrow Few Amsterdammers ride an omafiets to work.
So: 'few' is downward monotone.
At least 6 or at most 2 Amsterdammers ride an omafiets to work. $\nRightarrow($ and $\nLeftarrow)$ At least 6 or at most 2 Amsterdammers ride a bike to

So: 'at least 6 or at most 2 ' is not monotone.

Monotonicity

- Many Amsterdammers ride an omafiets to work. \Rightarrow Many Amsterdammers ride a bike to work.
So: 'many' is upward monotone.
- Few Amsterdammers ride a bike to work.
\Rightarrow Few Amsterdammers ride an omafiets to work.
So: 'few' is downward monotone.
- At least 6 or at most 2 Amsterdammers ride an omafiets to work. $\nRightarrow($ and $\nLeftarrow)$ At least 6 or at most 2 Amsterdammers ride a bike to work.
So: 'at least 6 or at most 2 ' is not monotone.

Monotonicity

- Many Amsterdammers ride an omafiets to work. \Rightarrow Many Amsterdammers ride a bike to work.
So: 'many' is upward monotone.
- Few Amsterdammers ride a bike to work.
\Rightarrow Few Amsterdammers ride an omafiets to work.
So: 'few' is downward monotone.
- At least 6 or at most 2 Amsterdammers ride an omafiets to work. $\nRightarrow($ and $\nLeftarrow)$ At least 6 or at most 2 Amsterdammers ride a bike to work.

So: 'at least 6 or at most 2 ' is not monotone.

Monotonicity Universal

Monotonicity Universal
All simple determiners are monotone.
(Barwise and Cooper 1981)

Monotonicity: Results

Shane Steinert-Threlkeld and Jakub Szymanik, "Learnability and Semantic Universals", in Semantics \& Pragmatics.
Code and data: https://github.com/shanest/quantifier-rnn-learning.

Monotonicity: Results

Shane Steinert-Threlkeld and Jakub Szymanik, "Learnability and Semantic Universals", in Semantics \& Pragmatics.
Code and data: https://github.com/shanest/quantifier-rnn-learning.

Quantity

- At least three buildings at Science Park are blue. There are exactly as many blue and non-blue buildings on El Camino Real as at Science Park. \Rightarrow At least three buildings on El Camino Real are blue.
So: 'at least three' is quantitative.
The first three buildings at Science Park are blue.
There are exactly as many blue and non-blue buildings on El
Camino Real as at Science Park.
\nRightarrow The first three buildings on El Camino Real are blue.
So: 'the first three' is not quantitative.

Quantity

- At least three buildings at Science Park are blue.

There are exactly as many blue and non-blue buildings on El
Camino Real as at Science Park.
\Rightarrow At least three buildings on El Camino Real are blue.
So: 'at least three' is quantitative.
The first three buildings at Science Park are blue.
There are exactly as many blue and non-blue buildings on El
Camino Real as at Science Park.
\nRightarrow The first three buildings on El Camino Real are blue.
So: 'the first three' is not quantitative.

Quantity

- At least three buildings at Science Park are blue.

There are exactly as many blue and non-blue buildings on El
Camino Real as at Science Park.
\Rightarrow At least three buildings on El Camino Real are blue.
So: 'at least three' is quantitative.

- The first three buildings at Science Park are blue.

There are exactly as many blue and non-blue buildings on EI Camino Real as at Science Park.
\nRightarrow The first three buildings on El Camino Real are blue.
So: 'the first three' is not quantitative.

Quantity

- At least three buildings at Science Park are blue.

There are exactly as many blue and non-blue buildings on El
Camino Real as at Science Park.
\Rightarrow At least three buildings on El Camino Real are blue.
So: 'at least three' is quantitative.

- The first three buildings at Science Park are blue.

There are exactly as many blue and non-blue buildings on EI Camino Real as at Science Park.
\nRightarrow The first three buildings on El Camino Real are blue.
So: 'the first three' is not quantitative.

Quantity Universal

- Q is quantitative: if $\langle M, A, B, \ldots\rangle \in \mathrm{Q}$ and $A \cap B, A \backslash B, B \backslash A, M \backslash(A \cup B)$ have the same cardinality (size) as their primed-counterparts, then $\left\langle M^{\prime}, A^{\prime}, B^{\prime}, \ldots\right\rangle \in \mathrm{Q}$

Quantity Universal
All simple determiners are quantitative.
(Keenan and Stavi 1986; Peters and Westerståhl 2006)

Quantity Universal

- Q is quantitative: if $\langle M, A, B, \ldots\rangle \in \mathrm{Q}$ and $A \cap B, A \backslash B, B \backslash A, M \backslash(A \cup B)$ have the same cardinality (size) as their primed-counterparts, then
$\left\langle M^{\prime}, A^{\prime}, B^{\prime}, \ldots\right\rangle \in \mathrm{Q}$
Quantity Universal
All simple determiners are quantitative.
(Keenan and Stavi 1986; Peters and Westerståhl 2006)

Quantity: Results

Shane Steinert-Threlkeld and Jakub Szymanik, "Learnability and Semantic Universals", in Semantics \& Pragmatics.
Code and data: https://github.com/shanest/quantifier-rnn-learning.

Quantity: Results

Shane Steinert-Threlkeld and Jakub Szymanik, "Learnability and Semantic Universals", in Semantics \& Pragmatics.
Code and data: https://github.com/shanest/quantifier-rnn-learning.

Conservativity

- Many Amsterdammers ride an omafiets to work. \equiv Many Amsterdammers are Amsterdammers who ride an omafiets to work.
So: 'many' is conservative.
Only Amsterdammers ride an omafiets to work. $\not \equiv$ Only Amsterdammers are Amsterdammers who ride an omafiets to work.

So: 'only' is not conservative.

Conservativity

- Many Amsterdammers ride an omafiets to work. \equiv Many Amsterdammers are Amsterdammers who ride an omafiets to work.
So: 'many' is conservative.
- Only Amsterdammers ride an omafiets to work. \#三 Only Amsterdammers are Amsterdammers who ride an omafiets to work.
So: 'only' is not conservative.

Conservativity

- Many Amsterdammers ride an omafiets to work. \equiv Many Amsterdammers are Amsterdammers who ride an omafiets to work.
So: 'many' is conservative.
- Only Amsterdammers ride an omafiets to work. $\not \equiv$ Only Amsterdammers are Amsterdammers who ride an omafiets to work.
So: 'only' is not conservative.

Conservativity

- Many Amsterdammers ride an omafiets to work. \equiv Many Amsterdammers are Amsterdammers who ride an omafiets to work.
So: 'many' is conservative.
- Only Amsterdammers ride an omafiets to work. $\not \equiv$ Only Amsterdammers are Amsterdammers who ride an omafiets to work.
So: 'only' is not conservative.

Conservativity Universal

Conservativity Universal
All simple determiners are conservative. (Barwise and Cooper 1981; Keenan and Stavi 1986)

Conservativity: Results

Shane Steinert-Threlkeld and Jakub Szymanik, "Learnability and Semantic Universals", in Semantics \& Pragmatics.
Code and data: https://github.com/shanest/quantifier-rnn-learning.

Conservativity: Results

Shane Steinert-Threlkeld and Jakub Szymanik, "Learnability and Semantic Universals", in Semantics \& Pragmatics.
Code and data: https://github.com/shanest/quantifier-rnn-learning.

Conservativity: Discussion

- The data generation does not 'break the symmetry' between $A \backslash B$ and $B \backslash A$.
- Conservativity may be a syntactic/structural constraint, not a constraint on the lexicon.
[See Fox 2002; Romoli 2015; Sportiche 2005, summarized Appendix to these slides]

Conservativity: Discussion

- The data generation does not 'break the symmetry' between $A \backslash B$ and $B \backslash A$.
- Conservativity may be a syntactic/structural constraint, not a constraint on the lexicon.
[See Fox 2002; Romoli 2015; Sportiche 2005, summarized Appendix to these slides]

Quantifiers: Summary

$$
D_{\langle e t,\langle e t, t\rangle\rangle}
$$

Outline

(1) Introduction

(2) Quantifiers

- RNNs + Encoding
- Applications
(3) Other Cases
- Responsive Predicates
- Color Terms

Outline

1) Introduction
(2) Quantifiers

- RNNs + Encoding
- Applications

3 Other Cases

- Responsive Predicates
- Color Terms

Types of Clause-Embedding Predicates

- Carlos believes that Amsterdam is the capital of the Netherlands.
- \# Carlos believes where Amsterdam is.
- \# Carlos wonders that Amsterdam is the capital of the Netherlands.
- Carlos wonders where Amsterdam is.
- Carlos knows that Amsterdam is the capital of the Netherlands.
- Carlos knows where Amsterdam is.

Types of Clause-Embedding Predicates

- Carlos believes that Amsterdam is the capital of the Netherlands.
- \# Carlos believes where Amsterdam is.
- \quad \# Carlos wonders that Amsterdam is the capital of the Netherlands.
- Carlos wonders where Amsterdam is.
- Carlos knows that Amsterdam is the capital of the Netherlands.
- Carlos knows where Amsterdam is.

Types of Clause-Embedding Predicates

- Carlos believes that Amsterdam is the capital of the Netherlands.
- \# Carlos believes where Amsterdam is.
- \quad \# Carlos wonders that Amsterdam is the capital of the Netherlands.
- Carlos wonders where Amsterdam is.
- Carlos knows that Amsterdam is the capital of the Netherlands.
- Carlos knows where Amsterdam is.

Types of Predicates

type	declarative	interrogative	example
rogative	\times	\checkmark	'wonder'
anti-rogative	\checkmark	x	'believe'
responsive	\checkmark	\checkmark	'know'

Lahiri 2002; Theiler, Roelofsen, and Aloni 2018; Uegaki 2018

Veridicality

- Maria knows that the canal has 7 bridges. \rightsquigarrow The canal has 7 bridges.
So: 'know' is veridical with respect to declarative complements.
- Maria knows how many bridges the canal has.

The canal has 7 bridges.
\rightsquigarrow Maria knows that the canal has 7 bridges.
So: 'know' is veridical with respect to interrogative complements.
So: 'know' is veridically uniform.

Veridicality

- Maria knows that the canal has 7 bridges.
\rightsquigarrow The canal has 7 bridges.
So: 'know' is veridical with respect to declarative complements.
- Maria knows how many bridges the canal has.

The canal has 7 bridges.
\rightsquigarrow Maria knows that the canal has 7 bridges.
So: 'know' is veridical with respect to interrogative complements.
So: 'know' is veridically uniform.

Veridicality

- Maria knows that the canal has 7 bridges.
\rightsquigarrow The canal has 7 bridges.
So: 'know' is veridical with respect to declarative complements.
- Maria knows how many bridges the canal has.

The canal has 7 bridges.
\rightsquigarrow Maria knows that the canal has 7 bridges.
So: 'know' is veridical with respect to interrogative complements.
So: 'know' is veridically uniform.

Veridicality

- Maria knows that the canal has 7 bridges.
\rightsquigarrow The canal has 7 bridges.
So: 'know' is veridical with respect to declarative complements.
- Maria knows how many bridges the canal has.

The canal has 7 bridges.
\rightsquigarrow Maria knows that the canal has 7 bridges.
So: 'know' is veridical with respect to interrogative complements.

Veridicality

- Maria knows that the canal has 7 bridges.
\rightsquigarrow The canal has 7 bridges.
So: 'know' is veridical with respect to declarative complements.
- Maria knows how many bridges the canal has.

The canal has 7 bridges.
\rightsquigarrow Maria knows that the canal has 7 bridges.
So: 'know' is veridical with respect to interrogative complements. So: 'know' is veridically uniform.

Veridicality

- Maria is certain that the canal has 7 bridges. \nsim The canal has 7 bridges.
So: 'be certain' is not veridical with respect to declarative complements.
- Maria is certain about how many bridges the canal has. The canal has 7 bridges.
\nLeftarrow Maria is certain that the canal has 7 bridges.
So: 'be certain' is not veridical with respect to interrogative
complements.
So: 'be certain' is veridically uniform.

Veridicality

- Maria is certain that the canal has 7 bridges.
\nsim The canal has 7 bridges.
So: 'be certain' is not veridical with respect to declarative complements.
- Maria is certain about how many bridges the canal has.
The canal has 7 bridges.
$y \rightarrow$ Maria is certain that the canal has 7 bridges.
So: 'be certain' is not veridical with respect to interrogative
complements.
So: 'be certain' is veridically uniform.

Veridicality

- Maria is certain that the canal has 7 bridges.
\nsim The canal has 7 bridges.
So: 'be certain' is not veridical with respect to declarative complements.
- Maria is certain about how many bridges the canal has.

The canal has 7 bridges.
\nLeftarrow Maria is certain that the canal has 7 bridges.
So: 'be certain' is not veridical with respect to interrogative
complements.
So: 'be certain' is veridically uniform.

Veridicality

- Maria is certain that the canal has 7 bridges.
\nsim The canal has 7 bridges.
So: 'be certain' is not veridical with respect to declarative complements.
- Maria is certain about how many bridges the canal has.

The canal has 7 bridges.
\nsim Maria is certain that the canal has 7 bridges.
So: 'be certain' is not veridical with respect to interrogative complements.
So: 'be certain' is veridically uniform.

Veridicality

- Maria is certain that the canal has 7 bridges.
\nsim The canal has 7 bridges.
So: 'be certain' is not veridical with respect to declarative complements.
- Maria is certain about how many bridges the canal has.

The canal has 7 bridges.
\nsim Maria is certain that the canal has 7 bridges.
So: 'be certain' is not veridical with respect to interrogative complements.
So: 'be certain' is veridically uniform.

The Veridical Uniformity Thesis

Veridical Uniformity Universal
All responsive predicates are veridically uniform.
(Spector and Egré 2015; Theiler, Roelofsen, and Aloni 2018)

Four Responsive Predicates

Veridical

Predicate	Lexical Entry: $\lambda P_{T} \cdot \lambda p_{\langle s, t\rangle} \cdot \lambda a_{e} \cdot \forall w \in p: \ldots$	Declarative	Interrogative
know	$w \in \operatorname{DOX}_{w}^{a} \in P$	\checkmark	\checkmark
wondows	$w \in \operatorname{DOX}_{w}^{a} \subseteq \operatorname{info}(P) \operatorname{and}^{2} \operatorname{DOX}_{w}^{a} \cap q \neq \emptyset \forall q \in \operatorname{alt}(P)$	\checkmark	x
knopinion	$w \in \operatorname{DOX}_{w}^{a}$ and $\left(\operatorname{DOX}_{w}^{a} \in P\right.$ or $\left.\operatorname{DOX}_{w}^{a} \in \pi P\right)$	x	\checkmark
be certain	$\operatorname{DOX}_{w}^{a} \in P$	x	x

Table: Four predicates, exemplifying the possible profiles of veridicality.

The semantics are given in terms of inquisitive semantics (Ciardelli, Groenendijk, and Roelofsen 2018).

Responsive Predicate Input

Suppose $W=\left\{w_{1}, w_{2}, w_{3}\right\}$, and we are considering an example with $\mathrm{Q}=\left\{\left\{w_{1}\right\},\left\{w_{2}, w_{3}\right\}\right\}$.

world	encoded	
w_{1}	$\left[\begin{array}{lll}1 & 0 & 0 \\ w_{2} & {\left[\begin{array}{lll}0 & 1 & 1 \\ w_{3} & {\left[\begin{array}{lll}0 & 1 & 1\end{array}\right]} \\ \hline\end{array}\right.}\end{array} \begin{array}{l} \\ \hline\end{array}\right.$	

We concatenate all of the following together:

- Encoding of each world
- A label for the predicate (e.g. $\left[\begin{array}{llll}0 & 1 & 0 & 0\end{array}\right]$)
- A label for the world of evaluation (e.g. $\left[\begin{array}{lll}0 & 0 & 1\end{array}\right]$)
- A vector (length $|W|)$ for $\operatorname{Dox}_{w}^{a}$ (e.g. $\left[\begin{array}{lll}0 & 1 & 1\end{array}\right]$)

Veridical Uniformity: Results

Shane Steinert-Threlkeld, "An Explanation of the Veridical Uniformity Universal", in Journal of Semantics.
Code and data: https://github.com/shanest/responsive-verbs.

Responsive Predicates: Summary

$D_{\text {responsive }}$

Outline

1) Introduction
(2) Quantifiers

- RNNs + Encoding
- Applications

3 Other Cases

- Responsive Predicates
- Color Terms

The Order of Color Terms

Berlin and Kay 1969; E. Gibson, Futrell, Jara-Ettinger, Mahowald, Bergen, Ratnasingam, M. Gibson, Steven T. Piantadosi, and Conway 2017; Regier, Kay, and Khetarpal 2007
https://www.vox.com/videos/2017/5/16/15646500/color-pattern-language

Convexity

While natural languages vary in how many color terms they have and which specific colors are denoted, it seems that all color terms denote very 'well-behaved' regions of color space.

X is convex just in case if $x, y \in X$, then for every $t \in(0,1)$,

Convexity

While natural languages vary in how many color terms they have and which specific colors are denoted, it seems that all color terms denote very 'well-behaved' regions of color space.

- X is convex just in case if $x, y \in X$, then for every $t \in(0,1)$,

$$
t x+(1-t) y \in X
$$

Convexity universal

Convexity Universal
All color terms denote convex regions of color space. (Gärdenfors 2014; Jäger 2010)

Partitioning CIE-L**a*** Space

We generated 300 artificial color-naming systems by partitioning the CIELab color space into distinct categories. CIELab approximates human color vision. It is perceptually uniform, meaning that the distance in the space corresponds well with the visually perceived color change.

Example Partitions of 2D space

Degree of convexity

We measured the degree of convexity as the (weighted) average area of the convex hull of each color that is covered by that color.

Degree of convexity

We measured the degree of convexity as the (weighted) average area of the convex hull of each color that is covered by that color.

Convexity: Results

Accuracy on test set as a function of degree of convexity

Shane Steinert-Threlkeld and Jakub Szymanik, "Ease of learning explains semantic universals", Cognition.
Code and data: https://github.com/shanest/color-learning.

Convexity: Commonality Analysis

Variable	R^{2}	ΔR^{2}
conn	0.180	0.0003
smooth	0.008	0.0365
degree of convexity	$\mathbf{0 . 5 0 5}$	$\mathbf{0 . 3 7 2 6}$
conn smooth	0.054	0.0019
min size	0.014	0.0000
max size	0.001	0.0000
median size	0.000	0.0007
min $/ \max$	0.043	0.0014
max $-\min$	0.000	0.0000

Shane Steinert-Threlkeld and Jakub Szymanik, "Ease of learning explains semantic universals", Cognition.
Code and data: https://github.com/shanest/color-learning.

Controlling for Linear Separability

Variable	R^{2}	ΔR^{2}
degree of convexity	$\mathbf{0 . 5 0 5}$	$\mathbf{0 . 1 2 8 8}$
linear separability	0.418	0.0005

Shane Steinert-Threlkeld and Jakub Szymanik, "Ease of learning explains semantic universals", Cognition.
Code and data: https://github.com/shanest/color-learning.

Cluster Analysis

Optimal clustering of accuracy data

Shane Steinert-Threlkeld and Jakub Szymanik, "Ease of learning explains semantic universals", Cognition.
Code and data: https://github.com/shanest/color-learning.

Colors: Summary

Interim Summary

Ease of learning, measured as the speed of convergence of NNs, can explain the presence of linguistic universals in various semantic domains, including both function and content words.

- Can the observed linguistic structure be explained by the learnability bias?
- Are there other / 'better' explanations?

Outline

4 Network Behavior on Responsives

5 Structural Account of Conservativity

6 Color Algorithm

(7) References

Confusion Matrices

	all		know										be-certain		knopinion			wondows	
label	1	0	1	0	1	0	1	0	1	0									
1	15412.2	1176.4	3881.1	261.7	3878.5	240.8	3843.0	349.2	3809.6	324.7									
0	587.8	14823.7	118.9	3738.3	121.6	3759.2	156.9	3650.9	190.4	3675.3									

Table: Average confusion matrix across all 60 trials, in total and by verb. The rows are predicted truth-value, and the columns the actual truth value.

Distributions by Verb

Figure: Distributions (Gaussian kernel density estimates) of the true/false positives/negatives by verb.

Accuracy by Semantic Properties of Input

factor	value	know	be-certain	knopinion	wondows
complement	declarative	0.983	0.986	0.954	0.983
	interrogative	0.923	0.924	0.921	0.841
$w \in$ DOX $_{w}^{a}$	1	0.964	0.957	0.954	0.947
	0	0.919	0.953	0.887	0.924
DOX $_{w}^{a} \in P$	1	0.961	0.966	0.949	0.947
	0	0.945	0.943	0.929	0.922

Table: Accuracy by verb and various semantic features of the input, aggregated across all trials.

Outline

4. Network Behavior on Responsives

(5) Structural Account of Conservativity

(6) Color Algorithm

(7) References

The Core Idea

Conservativity, neutrally stated: every sentence of the form "D NP VP " is truth-conditionally equivalent to " $\mathrm{D} N$ is an NP that VP".

Structural Conservativity: every sentence of the form "D NP VP" is truth-conditionally equivalent to $f(\llbracket \mathrm{NP} \rrbracket)(\llbracket \mathrm{VP} \rrbracket)$ for some conservative function f, whether or not D denotes a conservative quantifier.

The Core Idea

Conservativity, neutrally stated: every sentence of the form "D NP VP" is truth-conditionally equivalent to " D NP is an NP that VP".

Structural Conservativity: every sentence of the form "D NP VP" is truth-conditionally equivalent to $f(\llbracket \mathrm{NP} \rrbracket)(\llbracket \mathrm{VP} \rrbracket)$ for some conservative function f, whether or not D denotes a conservative quantifier.

Movement à la Heim \& Kratzer

Shane likes every waterfall.

Movement à la Heim \& Kratzer

Shane likes every waterfall.

Movement à la Heim \& Kratzer

Shane likes every waterfall.

Every waterfall is such that it is liked by Shane.

Movement as copying

Shane likes every waterfall.
every waterfall

Movement as copying

Shane likes every waterfall.

Movement as copying

Shane likes every waterfall.

Every waterfall is such that it is a waterfall liked by Shane.

Movement Without Type Mismatch

Every waterfall is tall.
Key ingredient: VP internal subject hypothesis (e.g. Kratzer 1996).

Movement Without Type Mismatch

Every waterfall is tall.
Key ingredient: VP internal subject hypothesis (e.g. Kratzer 1996).

Every waterfall is such that it is a waterfall that is tall.

Movement Without Type Mismatch

Every waterfall is tall.
Key ingredient: VP internal subject hypothesis (e.g. Kratzer 1996).

Every waterfall is such that it is a waterfall that is tall.

Worked Example

Consider a hypothetical non-conservative determiner 'equi':

$$
\llbracket \text { equi } \rrbracket=\{\langle M, A, B\rangle: A=B\}
$$

With (i) copy theory of movement and (ii) VP-internal subjects:
'Equi French people smoke cigarettes' is true iff:
\llbracket French people $\rrbracket=\llbracket$ French people $\rrbracket \cap$ [smoke cigarettes \rrbracket

This is equivalent to: 'All French people smoke cigarettes'!

Worked Example

Consider a hypothetical non-conservative determiner 'equi':

$$
\llbracket \text { equi } \rrbracket=\{\langle M, A, B\rangle: A=B\}
$$

With (i) copy theory of movement and (ii) VP-internal subjects:
'Equi French people smoke cigarettes' is true iff:
\llbracket French people $\rrbracket=\llbracket$ French people $\rrbracket \cap \llbracket$ smoke cigarettes \rrbracket

This is equivalent to: 'All French people smoke cigarettes'!

Worked Example

Consider a hypothetical non-conservative determiner 'equi':

$$
\llbracket \text { equi } \rrbracket=\{\langle M, A, B\rangle: A=B\}
$$

With (i) copy theory of movement and (ii) VP-internal subjects:
'Equi French people smoke cigarettes' is true iff:
\llbracket French people $\rrbracket=\llbracket$ French people $\rrbracket \cap$ smoke cigarettes \rrbracket

This is equivalent to: 'All French people smoke cigarettes'!

Outline

4. Network Behavior on Responsives

(5) Structural Account of Conservativity

6 Color Algorithm

7 References

Algorithm for Generating Golor Systems

```
Algorithm 1 Generate an artificial color system
Parameters: temp (t), conn (c), initial ball size (b)
Inputs: a set }X\mathrm{ , distance measure d, number of categories N
    UNLABELED }\leftarrowX; LABELED ; \leftarrow\emptyset (\foralli\in{1,\ldots,N}
    Choose }\mp@subsup{x}{1}{},\ldots,\mp@subsup{x}{N}{}\mathrm{ uniformly at random from }
    for i=1,\ldots,N do
        LABELED}\mp@subsup{\mp@code{N}}{i}{+=}\mp@subsup{x}{i}{\prime};\boldsymbol{pop}(\mp@subsup{x}{i}{},\mathrm{ UNLABELED)
        for all }x\in\mathrm{ NearestNeighbors( }\mp@subsup{x}{i}{\prime,b) do
        LABELED 
    end for
    end for
    while UNLABELED }\not=\emptyset\emptyset\mathrm{ do
        di
        pi}\leftarrow\mp@subsup{e}{}{\mp@subsup{d}{i}{\prime/t}}/\mp@subsup{\sum}{j}{}\mp@subsup{e}{}{\mp@subsup{d}{j}{\prime}/t
    Choose label i with probability pi
    LABELED
    end while
    for i=1,\ldots,N, ordered by increasing size of LABELEDi}\mathrm{ do
    Mi}\leftarrow\mathrm{ ConvexHull(LABELED i})\\mp@subsup{\mathrm{ LABELED }}{i}{
    Ri}\leftarrow\mathrm{ ClosestPoints(Mi, LABELED D, c | |Mi|)
    for all }x\in\mp@subsup{R}{i}{}\mathrm{ do
        LABELED ; += x; pop(x, cell(x))
        end for
    end for
```


Outline

4. Network Behavior on Responsives

(5) Structural Account of Conservativity

(6) Color Algorithm
(7) References

References I

R Barwise，Jon and Robin Cooper（1981）．＂Generalized Quantifiers and Natural Language＂．In：Linguistics and Philosophy 4．2， pp．159－219．
雷 Benthem，Johan van（1987）．＂Toward a Computational Semantics＂．
In：Generalized Quantifiers：Linguistic and Logical Approaches． Ed．by Peter Gardenfors．Kluwer Academic Publishers，pp．31－71．
囯 Berlin，Brent and Paul Kay（1969）．Basic Color Terms：Their Universality and Evolution．University of California Press．
圊 Chomsky，Noam（1980）．Rules and Representations．Oxford：Basil Blackwell．
國 Ciardelli，Ivano，Jeroen Groenendijk，and Floris Roelofsen（2018）． Inquisitive Semantics．Oxford Univeristy Press．
圊 Fox，Danny（2002）．＂Antecedent－Contained Deletion and the Copy Theory of Movement＂．In：Linguistic Inquiry 33．1，pp．63－96．DOI： 10．1162／002438902317382189．

References II

Eärdenfors，Peter（2014）．The Geometry of Meaning．The MIT Press．
囦 Gibson，Edward，Richard Futrell，Julian Jara－Ettinger， Kyle Mahowald，Leon Bergen，Sivalogeswaran Ratnasingam， Mitchell Gibson，Steven T．Piantadosi，and Bevil R．Conway（2017）．
＂Color naming across languages reflects color use＂．In： Proceedings of the National Academy of Sciences 114．40， pp．10785－10790．DOI： $10.1073 /$ pnas． 1619666114.
軎 Hochreiter，Sepp and Jürgen Schmidhuber（1997）．＂Long Short－Term Memory＂．In：Neural Computation 9．8，pp．1735－1780．DOI： 10．1162／neco．1997．9．8．1735．
围 Jäger，Gerhard（2010）．＂Natural Color Categories Are Convex Sets＂．
In：Logic，Language，and Meaning：Amsterdam Colloquium 2009.
Ed．by Maria Aloni，Harald Bastiaanse，Tikitu de Jager，and Katrin Schulz，pp．11－20．DOI：

$$
10.1007 / 978-3-642-14287-1 _2 .
$$

References III

Keenan，Edward L and Jonathan Stavi（1986）．＂A Semantic Characterization of Natural Language Determiners＂．In：Linguistics and Philosophy 9．3，pp．253－326．DOI： $10.1007 /$ BF00630273．
㞘 Kratzer，Angelika（1996）．＂Severing the External Argument from its Verb＂．In：Phrase Structure and the Lexicon．Ed．by Johan Rooryck and Laurie Zaring．Vol．33．Studies in Natural Language and Linguistic Theory．Springer Netherlands，pp．109－137．
R Lahiri，Utpal（2002）．Questions and Answers in Embedded Contexts． Oxford Univeristy Press．
固 Peters，Stanley and Dag Westerståhl（2006）．Quantifiers in Language and Logic．Oxford：Clarendon Press．
國 Piantadosi，Steven T，Joshua B Tenenbaum，and Noah D Goodman （2013）．＂Modeling the acquisition of quantifier semantics：a case study in function word learnability＂．In：

References IV

R Pullum, Geoffrey K. and Barbara C. Scholz (2002). "Empirical assessment of stimulus poverty arguments". In: The Linguistic Review 18.1-2, pp.9-50. DOI: 10.1515/tlir.19.1-2.9.
囯 Regier, Terry, Paul Kay, and Naveen Khetarpal (2007). "Color naming reflects optimal partitions of color space". In: Proceedings of the National Academy of Sciences 104.4, pp. 1436-1441. DOI: 10.1073/pnas.0610341104.

Romoli, Jacopo (2015). "A Structural Account of Conservativity". In: Semantics-Syntax Interface 2.1, pp. 28-57.

- Spector, Benjamin and Paul Egré (2015). "A uniform semantics for embedded interrogatives: an answer, not necessarily the answer". In: Synthese 192.6, pp. 1729-1784. DOI:
10.1007/s11229-015-0722-4.

直 Sportiche, Dominique (2005). "Division of labor between Merge and Move: Strict locality of selection and apparent reconstruction paradoxes".

References V

© Steinert－Threlkeld，Shane（2019）．＂An Explanation of the Veridical Uniformity Universal＂．In：Journal of Semantics．
目 Steinert－Threlkeld，Shane and Jakub Szymanik（2018）．＂Learnability and Semantic Universals＂．In：Semantics \＆Pragmatics．
围－（2019）．＂Ease of Learning Explains Semantic Universals＂．
囯 Szabolcsi，Anna（2010）．Quantification．Research Surveys in Linguistics．Cambridge：Cambridge University Press．
Theiler，Nadine，Floris Roelofsen，and Maria Aloni（2018）．＂A uniform semantics for declarative and interrogative complements＂．In： Journal of Semantics．DOI： $10.1093 /$ jos／ffy003．
囯 Uegaki，Wataru（2018）．＂The semantics of question－embedding predicates＂．In：Language and Linguistics Compass．

