Quantifiers

Other Cases

Computational approaches to the explanation of universal properties of meaning Lecture 2

Fausto Carcassi and Jakub Szymanik

Quantifiers

Outline

- Quantifiers
 RNNs + Encoding
 Applications
- Other Cases
 Responsive Predicates
 Color Terms

Quantifiers

Recap

Yesterday:

- Formulating the problem of semantic universals
- Providing various examples

Today:

• Explain universals via learnability

Quantifiers

Recap

Yesterday:

- Formulating the problem of semantic universals
- Providing various examples

Today:

• Explain universals via learnability

Quantifiers

Other Cases

Explaining Universals

Natural Question

Why do the attested universals hold?

Quantifiers

Other Cases

Explaining Universals

Natural Question

Why do the attested universals hold?

Quantifiers

Other Cases

Explaining Universals

Natural Question

Why do the attested universals hold?

Answer 1: *learnability* (as fencing-in; to be rejected). (Barwise and Cooper 1981; Keenan and Stavi 1986; Szabolcsi 2010)

The universals greatly restrict the search space that a language learner must explore when learning the meanings of expressions. This makes it easier (possible?) for them to learn such meanings from relatively small input.

Compare: Poverty of the Stimulus argument for UG. (Chomsky 1980; Pullum and Scholz 2002)

Quantifiers

Explaining Universals

Natural Question

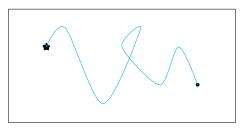
Why do the attested universals hold?

Quantifiers

Explaining Universals

Natural Question

Why do the attested universals hold?

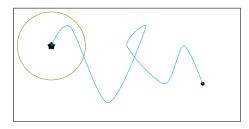


Quantifiers

Explaining Universals

Natural Question

Why do the attested universals hold?

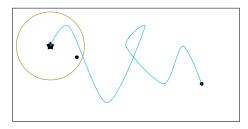


Quantifiers

Explaining Universals

Natural Question

Why do the attested universals hold?


Quantifiers

Other Cases

Explaining Universals

Natural Question

Why do the attested universals hold?


Quantifiers

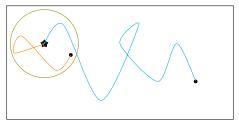
Other Cases

Explaining Universals

Natural Question

Why do the attested universals hold?

Quantifiers


Other Cases

Explaining Universals

Natural Question

Why do the attested universals hold?

Answer 1: *learnability* (as fencing-in; to be rejected). (Barwise and Cooper 1981; Keenan and Stavi 1986; Szabolcsi 2010)

Answer must in a sense be true, but:

- Restriction may not help much. (Steven T Piantadosi, Tenenbaum, and Goodman 2013)
- Does not explain *which* universals are attested.

Quantifiers

Other Cases

Explaining Universals

Natural Question

Why do the attested universals hold?

Answer 2: *learnability* (as temperature). (hints in van Benthem 1987; Peters and Westerståhl 2006)

Quantifiers

Other Cases

Explaining Universals

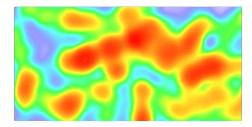
Natural Question

Why do the attested universals hold?

Answer 2: *learnability* (as temperature). (hints in van Benthem 1987; Peters and Westerståhl 2006)

Universals aid learnability because expressions satisfying the universals are *easier* to learn than those that do not.

Quantifiers


Other Cases

Explaining Universals

Natural Question

Why do the attested universals hold?

Answer 2: *learnability* (as temperature). (hints in van Benthem 1987; Peters and Westerståhl 2006)

Outline

Quantifiers Other Cases

Quantifiers

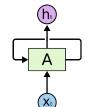
RNNs + Encoding

Applications

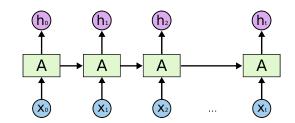
Quantifiers Other Cases

Outline

- 2 Quantifiers RNNs + Encoding
 - Applications

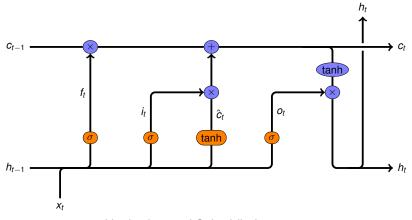


Other Cases



Quantifiers

Other Cases


=

Quantifiers

Other Cases

Long Short-Term Memory Network

Hochreiter and Schmidhuber 1997

Quantifiers

Other Cases

Quantifier Input

	∈ A ?	∈ B ?	Xi					
<i>0</i> ₁	\checkmark	\checkmark	[1	0	0	0	0	1]
<i>0</i> 2	\checkmark	Х	0	1	0	0	0	1]
<i>0</i> 3	х	\checkmark	0	0	1	0	0	1]
<i>0</i> 4	\checkmark	\checkmark	[1	0	0		0	1]
0 5	х	х	[0	0	0	1	0	1]

- x_i: *i*th input to LSTM
 - First four dimensions: where in the model is o_i
 - Last two dimensions: label for quantifier.
 Quantifiers: 'every' and 'some' (two total)
 This example: Q = 'some'

True label $y = \begin{bmatrix} 1 & 0 \end{bmatrix}$, because sentence is True.

Quantifiers

Outline

Quantifiers • RNNs + Encoding

Applications

Other Cases

- Responsive Predicates
- Color Terms

Quantifiers

Other Cases

Monotonicity

Many Amsterdammers ride an omafiets to work. ⇒ Many Amsterdammers ride a bike to work.

So: 'many' is upward monotone.

Few Amsterdammers ride a bike to work.
 ⇒ Few Amsterdammers ride an omafiets to work.

So: 'few' is *downward monotone*.

At least 6 or at most 2 Amsterdammers ride an omafiets to work.

 ⇒ (and *≠*) At least 6 or at most 2 Amsterdammers ride a bike to work.

So: 'at least 6 or at most 2' is not monotone.

Quantifiers

Other Cases

Monotonicity

Many Amsterdammers ride an omafiets to work.
 ⇒ Many Amsterdammers ride a bike to work.

So: 'many' is upward monotone.

- Few Amsterdammers ride a bike to work.
 ⇒ Few Amsterdammers ride an omafiets to work.
- So: 'few' is *downward monotone*.
 - At least 6 or at most 2 Amsterdammers ride an omafiets to work.

 ⇒ (and *≠*) At least 6 or at most 2 Amsterdammers ride a bike to work.
- So: 'at least 6 or at most 2' is not monotone.

Quantifiers

- Many Amsterdammers ride an omafiets to work.
 ⇒ Many Amsterdammers ride a bike to work.
- So: 'many' is upward monotone.
 - Few Amsterdammers ride a bike to work.
 ⇒ Few Amsterdammers ride an omafiets to work.
- So: 'few' is *downward monotone*.
 - At least 6 or at most 2 Amsterdammers ride an omafiets to work.

 ⇒ (and *≠*) At least 6 or at most 2 Amsterdammers ride a bike to work.
- So: 'at least 6 or at most 2' is not monotone.

Quantifiers

- Many Amsterdammers ride an omafiets to work.
 ⇒ Many Amsterdammers ride a bike to work.
- So: 'many' is upward monotone.
 - Few Amsterdammers ride a bike to work.
 ⇒ Few Amsterdammers ride an omafiets to work.
- So: 'few' is downward monotone.
 - At least 6 or at most 2 Amsterdammers ride an omafiets to work.

 ⇒ (and *≠*) At least 6 or at most 2 Amsterdammers ride a bike to work.
- So: 'at least 6 or at most 2' is not monotone.

Quantifiers

Other Cases

- Many Amsterdammers ride an omafiets to work.
 ⇒ Many Amsterdammers ride a bike to work.
- So: 'many' is upward monotone.
 - Few Amsterdammers ride a bike to work.
 ⇒ Few Amsterdammers ride an omafiets to work.
- So: 'few' is downward monotone.
 - At least 6 or at most 2 Amsterdammers ride an omafiets to work.

 ⇒ (and *≠*) At least 6 or at most 2 Amsterdammers ride a bike to work.
- So: 'at least 6 or at most 2' is not monotone.

Quantifiers

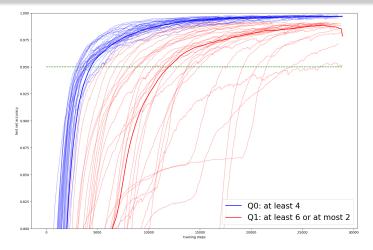
- Many Amsterdammers ride an omafiets to work.
 ⇒ Many Amsterdammers ride a bike to work.
- So: 'many' is upward monotone.
 - Few Amsterdammers ride a bike to work.
 ⇒ Few Amsterdammers ride an omafiets to work.
- So: 'few' is downward monotone.
 - At least 6 or at most 2 Amsterdammers ride an omafiets to work.

 ⇒ (and *≠*) At least 6 or at most 2 Amsterdammers ride a bike to work.
- So: 'at least 6 or at most 2' is not monotone.

Quantifiers

Other Cases

Monotonicity Universal

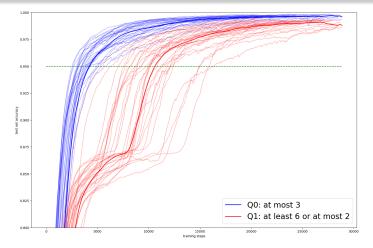

Monotonicity Universal

All simple determiners are monotone. (Barwise and Cooper 1981)

Quantifiers

Other Cases

Monotonicity: Results


Shane Steinert-Threlkeld and Jakub Szymanik, "Learnability and Semantic Universals", in *Semantics & Pragmatics*.

Code and data: https://github.com/shanest/quantifier-rnn-learning.

Quantifiers

Other Cases

Monotonicity: Results

Shane Steinert-Threlkeld and Jakub Szymanik, "Learnability and Semantic Universals", in *Semantics & Pragmatics*.

Code and data: https://github.com/shanest/quantifier-rnn-learning.

Quantifiers

Quantity

 At least three buildings at Science Park are blue. There are exactly as many blue and non-blue buildings on El Camino Real as at Science Park.

\Rightarrow At least three buildings on El Camino Real are blue.

So: 'at least three' is quantitative.

• The first three buildings at Science Park are blue. There are exactly as many blue and non-blue buildings on El Camino Real as at Science Park.

 \Rightarrow The first three buildings on El Camino Real are blue.

So: 'the first three' is not quantitative.

Quantifiers

Quantity

- At least three buildings at Science Park are blue.
 - There are exactly as many blue and non-blue buildings on El Camino Real as at Science Park.
 - \Rightarrow At least three buildings on El Camino Real are blue.
- So: 'at least three' is quantitative.
 - The first three buildings at Science Park are blue. There are exactly as many blue and non-blue buildings on El Camino Real as at Science Park.

 → The first three buildings on El Camino Real are blue
- So: 'the first three' is not quantitative.

Quantifiers

Quantity

- At least three buildings at Science Park are blue.
 - There are exactly as many blue and non-blue buildings on El Camino Real as at Science Park.
 - \Rightarrow At least three buildings on El Camino Real are blue.
- So: 'at least three' is quantitative.
 - The first three buildings at Science Park are blue.
 There are exactly as many blue and non-blue buildings on El Camino Real as at Science Park.
 - \Rightarrow The first three buildings on El Camino Real are blue.

So: 'the first three' is not quantitative.

Quantifiers

Quantity

- At least three buildings at Science Park are blue.
 - There are exactly as many blue and non-blue buildings on El Camino Real as at Science Park.
 - \Rightarrow At least three buildings on El Camino Real are blue.
- So: 'at least three' is quantitative.
 - The first three buildings at Science Park are blue.
 There are exactly as many blue and non-blue buildings on El Camino Real as at Science Park.
 - \Rightarrow The first three buildings on El Camino Real are blue.
- So: 'the first three' is not quantitative.

Quantifiers

Other Cases

Quantity Universal

Q is *quantitative*: if ⟨M, A, B, ...⟩ ∈ Q and A ∩ B, A \ B, B \ A, M \ (A ∪ B) have the same cardinality (size) as their primed-counterparts, then ⟨M', A', B', ...⟩ ∈ Q

Quantity Universal

All simple determiners are quantitative. (Keenan and Stavi 1986; Peters and Westerståhl 2000

Quantifiers

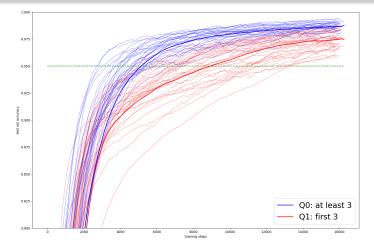
Other Cases

Quantity Universal

Q is quantitative:

if $\langle M, A, B, \ldots \rangle \in \mathbb{Q}$ and $A \cap B, A \setminus B, B \setminus A, M \setminus (A \cup B)$ have the same cardinality (size) as their primed-counterparts, then $\langle M', A', B', \ldots \rangle \in \mathbb{Q}$

Quantity Universal

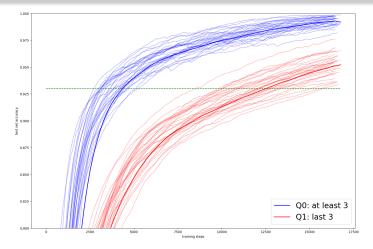

All simple determiners are quantitative.

(Keenan and Stavi 1986; Peters and Westerståhl 2006)

Quantifiers

Other Cases

Quantity: Results


Shane Steinert-Threlkeld and Jakub Szymanik, "Learnability and Semantic Universals", in *Semantics & Pragmatics*.

Code and data: https://github.com/shanest/quantifier-rnn-learning.

Quantifiers

Other Cases

Quantity: Results

Shane Steinert-Threlkeld and Jakub Szymanik, "Learnability and Semantic Universals", in *Semantics & Pragmatics*.

Code and data: https://github.com/shanest/quantifier-rnn-learning.

Quantifiers

Conservativity

- Many Amsterdammers ride an omafiets to work.

 Many Amsterdammers are Amsterdammers who ride an omafiets to work.
- So: 'many' is conservative.
 - Only Amsterdammers ride an omafiets to work.

 ≢ Only Amsterdammers are Amsterdammers who ride an omafiets to work.
- So: 'only' is not conservative.

Quantifiers

Conservativity

- Many Amsterdammers ride an omafiets to work.

 Many Amsterdammers are Amsterdammers who ride an omafiets to work.
- So: 'many' is conservative.
 - Only Amsterdammers ride an omafiets to work.

 ≢ Only Amsterdammers are Amsterdammers who ride an omafiets to work.

So: 'only' is not conservative.

Quantifiers

Conservativity

- Many Amsterdammers ride an omafiets to work.

 Many Amsterdammers are Amsterdammers who ride an omafiets to work.
- So: 'many' is *conservative*.
 - Only Amsterdammers ride an omafiets to work.

 ≢ Only Amsterdammers are Amsterdammers who ride an omafiets to work.

So: 'only' is not conservative.

Quantifiers

Conservativity

- Many Amsterdammers ride an omafiets to work.

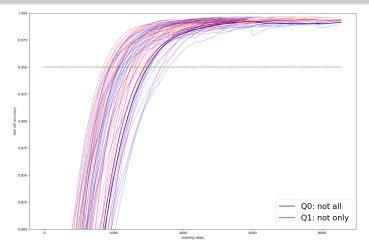
 Many Amsterdammers are Amsterdammers who ride an omafiets to work.
- So: 'many' is *conservative*.
 - Only Amsterdammers ride an omafiets to work.

 ≢ Only Amsterdammers are Amsterdammers who ride an omafiets to work.
- So: 'only' is not conservative.

Quantifiers

Other Cases

Conservativity Universal

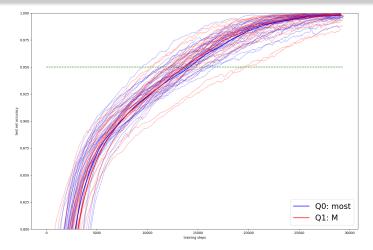

Conservativity Universal

All simple determiners are conservative. (Barwise and Cooper 1981; Keenan and Stavi 1986)

Quantifiers

Other Cases

Conservativity: Results


Shane Steinert-Threlkeld and Jakub Szymanik, "Learnability and Semantic Universals", in *Semantics & Pragmatics*.

Code and data: https://github.com/shanest/quantifier-rnn-learning.

Quantifiers

Other Cases

Conservativity: Results

Shane Steinert-Threlkeld and Jakub Szymanik, "Learnability and Semantic Universals", in *Semantics & Pragmatics*.

Code and data: https://github.com/shanest/quantifier-rnn-learning.

Quantifiers

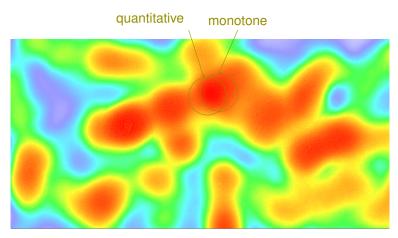
Other Cases

Conservativity: Discussion

- The data generation does not 'break the symmetry' between $A \setminus B$ and $B \setminus A$.
- Conservativity may be a syntactic/structural constraint, not a constraint on the lexicon.
 [See Fox 2002; Romoli 2015; Sportiche 2005, summarized Appendix to these slides]

Quantifiers

Other Cases


Conservativity: Discussion

- The data generation does not 'break the symmetry' between $A \setminus B$ and $B \setminus A$.
- Conservativity may be a syntactic/structural constraint, not a constraint on the lexicon.
 [See Fox 2002; Romoli 2015; Sportiche 2005, summarized Appendix to these slides]

Quantifiers

Other Cases

Quantifiers: Summary

 $D_{\langle et, \langle et, t \rangle \rangle}$

Quantifiers

Other Cases
Other Cases

Outline

Quantifiers
 RNNs + Encoding
 Applications

Other Cases

- Responsive Predicates
- Color Terms

Quantifiers

Other Cases

Outline

Quantifiers

RNNs + Encoding Applications

Other Cases

Responsive Predicates
Color Terms

Quantifiers

Other Cases

Types of Clause-Embedding Predicates

- Carlos believes that Amsterdam is the capital of the Netherlands.
 - # Carlos believes where Amsterdam is.
- # Carlos wonders that Amsterdam is the capital of the Netherlands.
 - Carlos wonders where Amsterdam is.
- Carlos knows that Amsterdam is the capital of the Netherlands.
 - Carlos knows where Amsterdam is.

Quantifiers

Other Cases

Types of Clause-Embedding Predicates

- Carlos believes that Amsterdam is the capital of the Netherlands.
 - # Carlos believes where Amsterdam is.
- # Carlos wonders that Amsterdam is the capital of the Netherlands.
 - Carlos wonders where Amsterdam is.
- Carlos knows that Amsterdam is the capital of the Netherlands.
 - Carlos knows where Amsterdam is.

Other Cases

Types of Clause-Embedding Predicates

- Carlos believes that Amsterdam is the capital of the Netherlands.
 - # Carlos believes where Amsterdam is.
- # Carlos wonders that Amsterdam is the capital of the Netherlands.
 - Carlos wonders where Amsterdam is.
- Carlos knows that Amsterdam is the capital of the Netherlands.
 - Carlos knows where Amsterdam is.

Quantifiers

Other Cases

Types of Predicates

type	declarative	interrogative	example
rogative anti-rogative	x	\checkmark	'wonder' 'believe'
responsive	\checkmark	× √	'know'

Lahiri 2002; Theiler, Roelofsen, and Aloni 2018; Uegaki 2018

Quantifiers

Veridicality

Maria knows that the canal has 7 bridges.
 ~> The canal has 7 bridges.

So: 'know' is veridical with respect to declarative complements.

 Maria knows how many bridges the canal has. The canal has 7 bridges.
 Maria knows that the canal has 7 bridges.

Quantifiers

Veridicality

Maria knows that the canal has 7 bridges.
 ~> The canal has 7 bridges.

So: 'know' is veridical with respect to declarative complements.

 Maria knows how many bridges the canal has. The canal has 7 bridges.
 Maria knows that the canal has 7 bridges.

Quantifiers

Veridicality

- So: 'know' is veridical with respect to declarative complements.
 - Maria knows how many bridges the canal has. The canal has 7 bridges.
 Maria knows that the canal has 7 bridges.

Quantifiers

Veridicality

- Maria knows that the canal has 7 bridges.
 ~> The canal has 7 bridges.
- So: 'know' is veridical with respect to declarative complements.
 - Maria knows how many bridges the canal has. The canal has 7 bridges.
 - \rightsquigarrow Maria knows that the canal has 7 bridges.

Quantifiers

Veridicality

- Maria knows that the canal has 7 bridges.
 ~> The canal has 7 bridges.
- So: 'know' is veridical with respect to declarative complements.
 - Maria knows how many bridges the canal has. The canal has 7 bridges.
 - \rightsquigarrow Maria knows that the canal has 7 bridges.

Quantifiers

Other Cases

Veridicality

So: 'be certain' is *not* veridical with respect to declarative complements.

• Maria is certain about how many bridges the canal has. The canal has 7 bridges.

So: 'be certain' is *not* veridical with respect to interrogative complements.

Quantifiers

Veridicality

- Maria is certain that the canal has 7 bridges.

So: 'be certain' is *not* veridical with respect to declarative complements.

• Maria is certain about how many bridges the canal has. The canal has 7 bridges.

So: 'be certain' is *not* veridical with respect to interrogative complements.

Quantifiers

Other Cases

Veridicality

- Maria is certain that the canal has 7 bridges.
 - $\not\rightarrow$ The canal has 7 bridges.
- So: 'be certain' is *not* veridical with respect to declarative complements.
 - Maria is certain about how many bridges the canal has. The canal has 7 bridges.

So: 'be certain' is *not* veridical with respect to interrogative complements.

Quantifiers

Veridicality

- Maria is certain that the canal has 7 bridges.
 - $\not\rightarrow$ The canal has 7 bridges.
- So: 'be certain' is *not* veridical with respect to declarative complements.
 - Maria is certain about how many bridges the canal has. The canal has 7 bridges.

So: 'be certain' is *not* veridical with respect to interrogative complements.

Quantifiers

Veridicality

- Maria is certain that the canal has 7 bridges.
 - $\not\rightarrow$ The canal has 7 bridges.
- So: 'be certain' is *not* veridical with respect to declarative complements.
 - Maria is certain about how many bridges the canal has. The canal has 7 bridges.

So: 'be certain' is *not* veridical with respect to interrogative complements.

Quantifiers

Other Cases

The Veridical Uniformity Thesis

Veridical Uniformity Universal

All responsive predicates are veridically uniform. (Spector and Egré 2015; Theiler, Roelofsen, and Aloni 2018)

Quantifiers

Other Cases

Four Responsive Predicates

		Veridical	
Predicate	Lexical Entry: $\lambda P_T . \lambda p_{\langle s,t \rangle} . \lambda a_e . \forall w \in p :$	Declarative	Interrogative
know	$\pmb{w} \in {\tt DOX}^{\pmb{a}}_{\pmb{w}} \in \pmb{P}$	\checkmark	\checkmark
wondows	$w \in \text{DOX}^a_w \subseteq \text{info}(P) \text{ and } \text{DOX}^a_w \cap q \neq \emptyset \ \forall q \in \text{alt}(P)$	\checkmark	х
knopinion	$w \in \text{DOX}_w^a$ and $(\text{DOX}_w^a \in P \text{ or } \text{DOX}_w^a \in \neg P)$	х	\checkmark
be certain	$DOX^{\boldsymbol{a}}_{\boldsymbol{w}} \in \boldsymbol{\boldsymbol{\mathcal{P}}}$	х	х

Table: Four predicates, exemplifying the possible profiles of veridicality.

The semantics are given in terms of *inquisitive semantics* (Ciardelli, Groenendijk, and Roelofsen 2018).

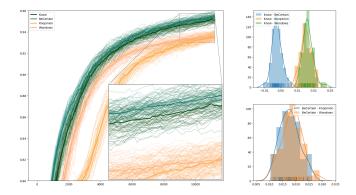
Quantifiers

Other Cases

Responsive Predicate Input

Suppose $W = \{w_1, w_2, w_3\}$, and we are considering an example with $Q = \{\{w_1\}, \{w_2, w_3\}\}$.

world	encoded		
W ₁	[1	0	0]
W ₂	[0	1	1]
W ₃	[0	1	1]

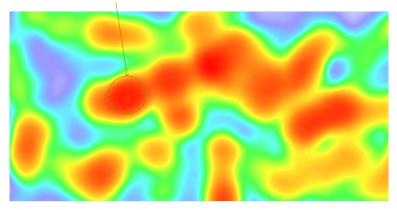

We concatenate all of the following together:

- Encoding of each world
- A label for the predicate (e.g. $\begin{bmatrix} 0 & 1 & 0 & 0 \end{bmatrix}$)
- A label for the world of evaluation (e.g. $\begin{bmatrix} 0 & 0 & 1 \end{bmatrix}$)
- A vector (length |W|) for Dox_w^a (e.g. $\begin{bmatrix} 0 & 1 & 1 \end{bmatrix}$)

Quantifiers

Other Cases

Veridical Uniformity: Results


Shane Steinert-Threlkeld, "An Explanation of the Veridical Uniformity Universal", in *Journal of Semantics.*

Code and data: https://github.com/shanest/responsive-verbs.

Other Cases

Responsive Predicates: Summary

veridically uniform

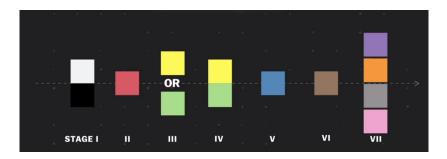
Quantifiers

Other Cases

Outline

Quantifiers

RNNs + Encoding Applications


Other Cases

- Responsive Predicates
- Color Terms

Quantifiers

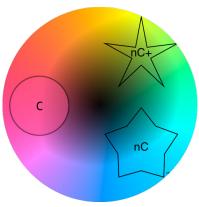
Other Cases

The Order of Color Terms

Berlin and Kay 1969; E. Gibson, Futrell, Jara-Ettinger, Mahowald, Bergen, Ratnasingam, M. Gibson, Steven T. Piantadosi, and Conway 2017; Regier, Kay, and Khetarpal 2007

https://www.vox.com/videos/2017/5/16/15646500/color-pattern-language

Quantifiers


Other Cases

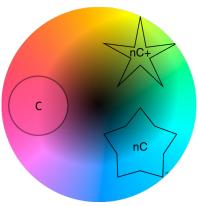
Convexity

While natural languages vary in how many color terms they have and which specific colors are denoted, it seems that all color terms denote very 'well-behaved' regions of color space.

• *X* is *convex* just in case if $x, y \in X$, then for every $t \in (0, 1)$,

 $tx + (1-t)y \in X$

Quantifiers


Other Cases

Convexity

While natural languages vary in how many color terms they have and which specific colors are denoted, it seems that all color terms denote very 'well-behaved' regions of color space.

• X is *convex* just in case if $x, y \in X$, then for every $t \in (0, 1)$,

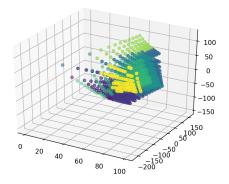
 $tx + (1-t)y \in X$

Quantifiers

Other Cases

Convexity universal

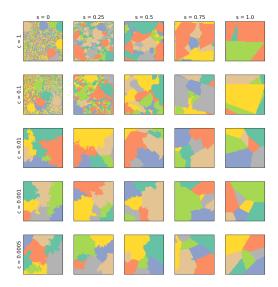
Convexity Universal


All color terms denote convex regions of color space. (Gärdenfors 2014; Jäger 2010)

Quantifiers

Other Cases

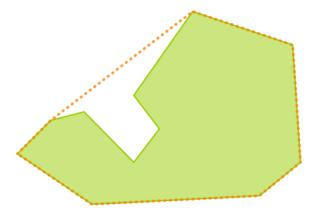
Partitioning CIE-L*a*b* Space


We generated 300 artificial color-naming systems by partitioning the CIELab color space into distinct categories. CIELab approximates human color vision. It is perceptually uniform, meaning that the distance in the space corresponds well with the visually perceived color change.

Quantifiers

Other Cases

Example Partitions of 2D space

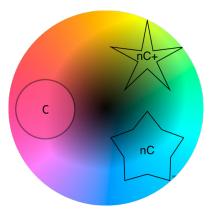


Quantifiers

Other Cases

Degree of convexity

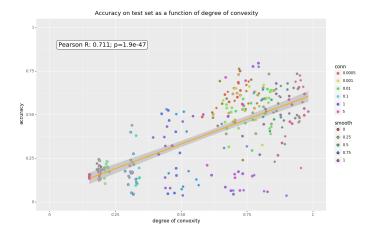
We measured the degree of convexity as the (weighted) average area of the convex hull of each color that is covered by that color.



Quantifiers

Other Cases

Degree of convexity


We measured the degree of convexity as the (weighted) average area of the convex hull of each color that is covered by that color.

Quantifiers

Other Cases

Convexity: Results

Shane Steinert-Threlkeld and Jakub Szymanik, "Ease of learning explains semantic universals", *Cognition*.

Quantifiers

Other Cases

Convexity: Commonality Analysis

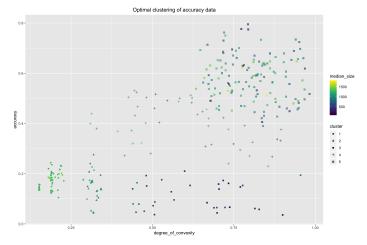
Variable	R^2	ΔR^2
conn	0.180	0.0003
smooth	0.008	0.0365
degree of convexity	0.505	0.3726
conn · smooth	0.054	0.0019
min size	0.014	0.0000
max size	0.001	0.0000
median size	0.000	0.0007
min / max	0.043	0.0014
max – min	0.000	0.0000

Shane Steinert-Threlkeld and Jakub Szymanik, "Ease of learning explains semantic universals", *Cognition*.

Quantifiers

Other Cases

Controlling for Linear Separability

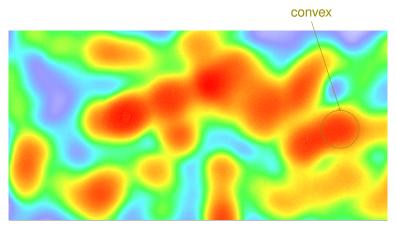

Variable	R^2	ΔR^2
degree of convexity	0.505	0.1288
linear separability	0.418	0.0005

Shane Steinert-Threlkeld and Jakub Szymanik, "Ease of learning explains semantic universals", *Cognition*.

Quantifiers

Other Cases

Cluster Analysis



Shane Steinert-Threlkeld and Jakub Szymanik, "Ease of learning explains semantic universals", *Cognition*.

Quantifiers

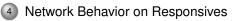
Other Cases

Colors: Summary

Quantifiers

Interim Summary

Ease of learning, measured as the speed of convergence of NNs, can explain the presence of linguistic universals in various semantic domains, including both function and content words.


- Can the observed linguistic structure be explained by the learnability bias?
- Are there other / 'better' explanations?

Structural Account of Conservativity

Color Algorithm

References 000000

Outline

5) Structural Account of Conservativity

6 Color Algorithm

Structural Account of Conservativity

Color Algorithm

References 000000

Confusion Matrices

	all		know		be-certain		knopinion		wondows	
label	1	0	1	0	1	0	1	0	1	0
1	15412.2	1176.4	3881.1	261.7	3878.5	240.8	3843.0	349.2	3809.6	324.7
0	587.8	14823.7	118.9	3738.3	121.6	3759.2	156.9	3650.9	190.4	3675.3

Table: Average confusion matrix across all 60 trials, in total and by verb. The rows are predicted truth-value, and the columns the actual truth value.

Structural Account of Conservativity

Color Algorithm

References 000000

Distributions by Verb

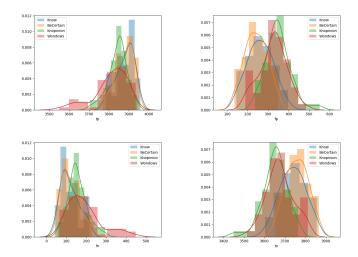


Figure: Distributions (Gaussian kernel density estimates) of the true/false positives/negatives by verb.

Structural Account of Conservativity

Color Algorithm

References 000000

Accuracy by Semantic Properties of Input

factor	value	know	be-certain	knopinion	wondows
complement	declarative	0.983	0.986	0.954	0.983
	interrogative	0.923	0.924	0.921	0.841
$\textit{W} \in \text{DOX}^{\textit{a}}_{\textit{W}}$	1	0.964	0.957	0.954	0.947
	0	0.919	0.953	0.887	0.924
$DOX^a_w \in P$	1	0.961	0.966	0.949	0.947
	0	0.945	0.943	0.929	0.922

Table: Accuracy by verb and various semantic features of the input, aggregated across all trials.

Structural Account of Conservativity •00000 Color Algorithm

References 000000

5 Structural Account of Conservativity

6 Color Algorithm

The Core Idea

Structural Account of Conservativity

Color Algorithm

References 000000

Conservativity, neutrally stated: every sentence of the form "D NP VP" is truth-conditionally equivalent to "D NP is an NP that VP".

Structural Conservativity: every sentence of the form "D NP VP" is truth-conditionally equivalent to f([NP])([VP]]) for some conservative function *f*, *whether or not* D denotes a conservative quantifier.

The Core Idea

Structural Account of Conservativity

Color Algorithm

References 000000

Conservativity, neutrally stated: every sentence of the form "D NP VP" is truth-conditionally equivalent to "D NP is an NP that VP".

Structural Conservativity: every sentence of the form "D NP VP" is truth-conditionally equivalent to f([NP])([VP]]) for some conservative function *f*, *whether or not* D denotes a conservative quantifier.

Structural Account of Conservativity

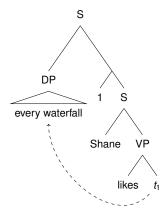
Color Algorithm

References

Movement à la Heim & Kratzer

Shane likes every waterfall.

Every waterfall is such that it is liked by Shane.


Structural Account of Conservativity

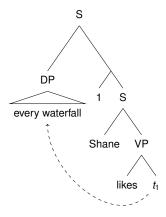
Color Algorithm

References

Movement à la Heim & Kratzer

Shane likes every waterfall.

Every waterfall is such that it is liked by Shane.


Structural Account of Conservativity

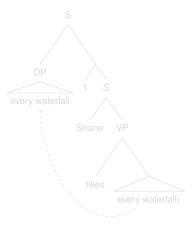
Color Algorithm

References

Movement à la Heim & Kratzer

Shane likes every waterfall.

Every waterfall is such that it is liked by Shane.


Structural Account of Conservativity

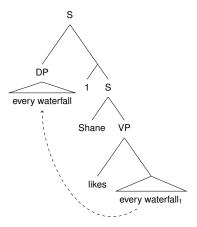
Color Algorithm

References 000000

Movement as copying

Shane likes every waterfall.

Every waterfall is such that it is a waterfall liked by Shane.


Structural Account of Conservativity

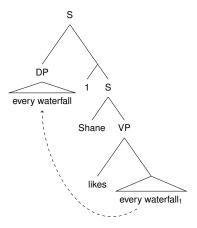
Color Algorithm

References 000000

Movement as copying

Shane likes every waterfall.

Every waterfall is such that it is a waterfall liked by Shane.


Structural Account of Conservativity

Color Algorithm

References 000000

Movement as copying

Shane likes every waterfall.

Every waterfall is such that it is a waterfall liked by Shane.

Structural Account of Conservativity

Color Algorithm

References 000000

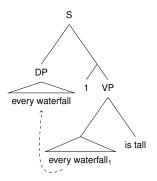
Movement Without Type Mismatch

Every waterfall is tall.

Key ingredient: VP internal subject hypothesis (e.g. Kratzer 1996).

Every waterfall is such that it is a waterfall that is tall.

Structural Account of Conservativity


Color Algorithm

References

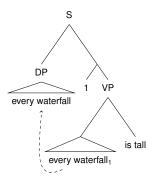
Movement Without Type Mismatch

Every waterfall is tall.

Key ingredient: VP internal subject hypothesis (e.g. Kratzer 1996).

Every waterfall is such that it is a waterfall that is tall.

Structural Account of Conservativity


Color Algorithm

References

Movement Without Type Mismatch

Every waterfall is tall.

Key ingredient: VP internal subject hypothesis (e.g. Kratzer 1996).

Every waterfall is such that it is a waterfall that is tall.

Structural Account of Conservativity

Color Algorithm

References 000000

Worked Example

Consider a hypothetical non-conservative determiner 'equi':

 $\llbracket \mathsf{equi} \rrbracket = \{ \langle \textit{\textit{M}},\textit{\textit{A}},\textit{\textit{B}} \rangle : \textit{\textit{A}} = \textit{\textit{B}} \}$

With (i) copy theory of movement and (ii) VP-internal subjects: 'Equi French people smoke cigarettes' is true iff:

[[French people]] = [[French people]] ∩ [[smoke cigarettes]]

This is equivalent to: 'All French people smoke cigarettes'!

Structural Account of Conservativity

Color Algorithm

References 000000

Worked Example

Consider a hypothetical non-conservative determiner 'equi':

$$\llbracket \mathsf{equi} \rrbracket = \{ \langle \textit{\textit{M}}, \textit{\textit{A}}, \textit{\textit{B}} \rangle : \textit{\textit{A}} = \textit{\textit{B}} \}$$

With (i) copy theory of movement and (ii) VP-internal subjects: 'Equi French people smoke cigarettes' is true iff:

 $\llbracket French people \rrbracket = \llbracket French people \rrbracket \cap \llbracket smoke cigarettes \rrbracket$

This is equivalent to: 'All French people smoke cigarettes'!

Structural Account of Conservativity

Color Algorithm

References 000000

Worked Example

Consider a hypothetical non-conservative determiner 'equi':

$$\llbracket \mathsf{equi} \rrbracket = \{ \langle \textit{\textit{M}}, \textit{\textit{A}}, \textit{\textit{B}} \rangle : \textit{\textit{A}} = \textit{\textit{B}} \}$$

With (i) copy theory of movement and (ii) VP-internal subjects: 'Equi French people smoke cigarettes' is true iff:

 $\llbracket French people \rrbracket = \llbracket French people \rrbracket \cap \llbracket smoke cigarettes \rrbracket$

This is equivalent to: 'All French people smoke cigarettes'!

Structural Account of Conservativity

Color Algorithm

References 000000

Outline

Network Behavior on Responsives

5 Structural Account of Conservativity

6 Color Algorithm

7 References

Structural Account of Conservativity

Color Algorithm

References

Algorithm for Generating Color Systems

```
Algorithm 1 Generate an artificial color system
Parameters: temp (t), conn (c), initial ball size (b)
Inputs: a set X, distance measure d, number of categories N
   UNLABELED \leftarrow X; LABELED<sub>i</sub> \leftarrow \emptyset (\forall i \in \{1, \ldots, N\})
  Choose x_1, \ldots, x_N uniformly at random from X
  for i = 1, \ldots, N do
       LABELED<sub>i</sub> += x_i; pop(x_i, UNLABELED)
       for all x \in \text{NearestNeighbors}(x_i, b) do
           LABELED<sub>i</sub> += x; pop(x, UNLABELED)
       end for
  end for
  while UNLABELED \neq \emptyset do
       d_i \leftarrow 1/(\min_{x' \in \text{LABELED}_i} d(x, x'))^{1/4}
       p_i \leftarrow e^{d_i/t} / \sum_i e^{d_j/t}
       Choose label i with probability p_i
       LABELED<sub>i</sub> += x; pop(x, UNLABELED)
  end while
  for i = 1, ..., N, ordered by increasing size of LABELED, do
       M_i \leftarrow \mathbf{ConvexHull}(\mathsf{LABELED}_i) \setminus \mathsf{LABELED}_i
       R_i \leftarrow \text{ClosestPoints}(M_i, \text{LABELED}_i, c \cdot |M_i|)
       for all x \in R_i do
           LABELED<sub>i</sub> += x: pop(x, cell(x))
       end for
  end for
```

Structural Account of Conservativity

Color Algorithm

References •00000

Outline

4 Network Behavior on Responsives

5) Structural Account of Conservativity

6 Color Algorithm

Structural Account of Conservativity

Color Algorithm

References

References I

- Barwise, Jon and Robin Cooper (1981). "Generalized Quantifiers and Natural Language". In: *Linguistics and Philosophy* 4.2, pp. 159–219.
 - Benthem, Johan van (1987). "Toward a Computational Semantics". In: *Generalized Quantifiers: Linguistic and Logical Approaches*. Ed. by Peter Gardenfors. Kluwer Academic Publishers, pp. 31–71.
- Berlin, Brent and Paul Kay (1969). *Basic Color Terms: Their Universality and Evolution*. University of California Press.
 - Chomsky, Noam (1980). *Rules and Representations*. Oxford: Basil Blackwell.
 - Ciardelli, Ivano, Jeroen Groenendijk, and Floris Roelofsen (2018). Inquisitive Semantics. Oxford University Press.
 - Fox, Danny (2002). "Antecedent-Contained Deletion and the Copy Theory of Movement". In: *Linguistic Inquiry* 33.1, pp. 63–96. DOI: 10.1162/002438902317382189.

Structural Account of Conservativity

Color Algorithm

References

References II

- Gärdenfors, Peter (2014). The Geometry of Meaning. The MIT Press.
- Gibson, Edward, Richard Futrell, Julian Jara-Ettinger, Kyle Mahowald, Leon Bergen, Sivalogeswaran Ratnasingam, Mitchell Gibson, Steven T. Piantadosi, and Bevil R. Conway (2017).
 "Color naming across languages reflects color use". In: Proceedings of the National Academy of Sciences 114.40, pp. 10785–10790. DOI: 10.1073/pnas.1619666114.
- Hochreiter, Sepp and Jürgen Schmidhuber (1997). "Long Short-Term Memory". In: Neural Computation 9.8, pp. 1735–1780. DOI: 10.1162/neco.1997.9.8.1735.
- Jäger, Gerhard (2010). "Natural Color Categories Are Convex Sets". In: Logic, Language, and Meaning: Amsterdam Colloquium 2009. Ed. by Maria Aloni, Harald Bastiaanse, Tikitu de Jager, and Katrin Schulz, pp. 11–20. DOI: 10.1007/978-3-642-14287-1_2.

Structural Account of Conservativity

Color Algorithm

References

References III

- Keenan, Edward L and Jonathan Stavi (1986). "A Semantic Characterization of Natural Language Determiners". In: *Linguistics and Philosophy* 9.3, pp. 253–326. DOI: 10.1007/BF00630273.
 - Kratzer, Angelika (1996). "Severing the External Argument from its Verb". In: Phrase Structure and the Lexicon. Ed. by Johan Rooryck and Laurie Zaring. Vol. 33. Studies in Natural Language and Linguistic Theory. Springer Netherlands, pp. 109–137.
- Lahiri, Utpal (2002). *Questions and Answers in Embedded Contexts*. Oxford University Press.
- Peters, Stanley and Dag Westerståhl (2006). *Quantifiers in Language and Logic*. Oxford: Clarendon Press.
- Piantadosi, Steven T, Joshua B Tenenbaum, and Noah D Goodman (2013). "Modeling the acquisition of quantifier semantics: a case study in function word learnability". In:

Structural Account of Conservativity

Color Algorithm

References

References IV

- Pullum, Geoffrey K. and Barbara C. Scholz (2002). "Empirical assessment of stimulus poverty arguments". In: *The Linguistic Review* 18.1-2, pp. 9–50. DOI: 10.1515/tlir.19.1-2.9.
 - Regier, Terry, Paul Kay, and Naveen Khetarpal (2007). "Color naming reflects optimal partitions of color space". In: Proceedings of the National Academy of Sciences 104.4, pp. 1436–1441. DOI: 10.1073/pnas.0610341104.
- Romoli, Jacopo (2015). "A Structural Account of Conservativity". In: Semantics-Syntax Interface 2.1, pp. 28–57.
 - Spector, Benjamin and Paul Egré (2015). "A uniform semantics for embedded interrogatives: an answer, not necessarily the answer". In: Synthese 192.6, pp. 1729–1784. DOI:

10.1007/s11229-015-0722-4.

Sportiche, Dominique (2005). "Division of labor between Merge and Move: Strict locality of selection and apparent reconstruction paradoxes".

Structural Account of Conservativity

Color Algorithm

References

References V

- Steinert-Threlkeld, Shane (2019). "An Explanation of the Veridical Uniformity Universal". In: *Journal of Semantics*.
- Steinert-Threlkeld, Shane and Jakub Szymanik (2018). "Learnability and Semantic Universals". In: Semantics & Pragmatics.
 - (2019). "Ease of Learning Explains Semantic Universals".
 - Szabolcsi, Anna (2010). *Quantification*. Research Surveys in Linguistics. Cambridge: Cambridge University Press.
- Theiler, Nadine, Floris Roelofsen, and Maria Aloni (2018). "A uniform semantics for declarative and interrogative complements". In: *Journal of Semantics*. DOI: 10.1093/jos/ffy003.
 - Uegaki, Wataru (2018). "The semantics of question-embedding predicates". In: *Language and Linguistics Compass.*