Literature

- Westerståhl, Generalized Quantifiers, SEP.
- Peters \& Westerståhl, Quantifiers in Language and Logic, OUP, 2008.
- Handbook of Logic and Language, Van Benthem \& Ter Meulen (Eds.), Elsevier 2011.
- Szymanik, Quantifiers \& Cognition, Studies in Linguistics \& Philosophy, Springer, 2016.

Determiners: Examples

(1) All poets have low self-esteem.
(2) Some dean danced nude on the table.
(3) At least 3 grad students prepared presentations.
(4) An even number of the students saw a ghost.
(5) Most of the students think they are smart.
(6) Less than half of the students received good marks.
(7) Many of the soldiers have not eaten for several days.
(8) A few of the conservatives complained about taxes.

And many more...

Determiners

Definition

Expressions that appear to be descriptions of quantity.

Example

All, not quite all, nearly all, an awful lot, a lot, a comfortable majority, most, many, more than n, less than n, quite a few, quite a lot, several, not a lot, not many, only a few, few, a few, hardly any, one, two, three.

Quantifiers are second-order relations

Observation

If we fix a model $M=\left(M, A^{M}, B^{M}\right)$, then we can treat a generalized quantifier as a relation between relations over the universe.

Example

$$
\text { every }[A, B]=1 \text { iff } A^{M} \subseteq B^{M}
$$

$$
\operatorname{even}[A, B]=1 \text { iff } \operatorname{card}\left(A^{M} \cap B^{M}\right) \text { is even }
$$

Quantifiers are second-order relations

Observation

If we fix a model $M=\left(M, A^{M}, B^{M}\right)$, then we can treat a generalized quantifier as a relation between relations over the universe.

Example

$$
\begin{gathered}
\text { every }[A, B]=1 \text { iff } A^{M} \subseteq B^{M} \\
\text { even }[A, B]=1 \text { iff } \operatorname{card}\left(A^{M} \cap B^{M}\right) \text { is even }
\end{gathered}
$$

Quantifiers are second-order relations

Observation

If we fix a model $M=\left(M, A^{M}, B^{M}\right)$, then we can treat a generalized quantifier as a relation between relations over the universe.

Example

$$
\begin{gathered}
\text { every }[A, B]=1 \text { iff } A^{M} \subseteq B^{M} \\
\text { even }[A, B]=1 \text { iff } \operatorname{card}\left(A^{M} \cap B^{M}\right) \text { is even } \\
\operatorname{most}[A, B]=1 \text { iff } \operatorname{card}\left(A^{M} \cap B^{M}\right)>\operatorname{card}\left(A^{M}-B^{M}\right)
\end{gathered}
$$

Illustration

Generalized Quantifiers

Definition

A quantifier Q is a way of associating with each set M a function from pairs of subsets of M into $\{0,1\}$ (False, True).

Example

$$
\text { every }_{M}[A, B]=1 \text { iff } A \subseteq B
$$

$\operatorname{even}_{M}[A, B]=1$ iff $\operatorname{card}(A \cap B)$ is even
$\operatorname{most}_{M}[A, B]=1$ iff $\operatorname{card}(A \cap B)>\operatorname{card}(A-B)$

Generalized Quantifiers

Definition

A quantifier Q is a way of associating with each set M a function from pairs of subsets of M into $\{0,1\}$ (False, True).

Example

$$
\text { every }_{M}[A, B]=1 \text { iff } A \subseteq B
$$

$\operatorname{even}_{M}[A, B]=1 \mathrm{iff} \operatorname{card}(A \cap B)$ is even

$$
\operatorname{most}_{M}[A, B]=1 \mathrm{iff} \operatorname{card}(A \cap B)>\operatorname{card}(A-B)
$$

Generalized Quantifiers

Definition

A quantifier Q is a way of associating with each set M a function from pairs of subsets of M into $\{0,1\}$ (False, True).

Example

$$
\begin{gathered}
\text { every }_{M}[A, B]=1 \text { iff } A \subseteq B \\
\text { even }_{M}[A, B]=1 \text { iff } \operatorname{card}(A \cap B) \text { is even } \\
\operatorname{most}_{M}[A, B]=1 \text { iff } \operatorname{card}(A \cap B)>\operatorname{card}(A-B)
\end{gathered}
$$

Space of GQs

Q is a function from M into a function from pairs of subsets of M into $\{0,1\}$.

- If $\operatorname{card}(M)=n$, then there are $2^{2^{2 n}}$ GQs.
- For $n=2$ it gives 65,536 possibilities.

Question
Which of those are realized in natural language as determiners?

Space of GQs

Q is a function from M into a function from pairs of subsets of M into $\{0,1\}$.

- If $\operatorname{card}(M)=n$, then there are $2^{2^{2 n}} \mathrm{GQs}$.
- For $n=2$ it gives 65,536 possibilities.

Question

Which of those are realized in natural language as determiners?

Outline

(1) Informal Introduction to Generalized Quantifiers

2 Semantic Universals
(3) Generalized Quantifier Theory

Isomorphism closure

 (ISOM) If $(M, A, B) \cong\left(M^{\prime}, A^{\prime}, B^{\prime}\right)$, then $\mathrm{Q}_{\mathrm{M}}(A, B) \Leftrightarrow \mathrm{Q}_{\mathrm{M}^{\prime}}\left(A^{\prime}, B^{\prime}\right)$

Topic neutrality

Extensionality

(EXT) If $M \subseteq M^{\prime}$, then $\mathrm{Q}_{\mathbf{M}}(A, B) \Leftrightarrow \mathrm{Q}_{\mathbf{M}^{\prime}}(A, B)$

Conservativity $(C O N S) \mathrm{Q}_{\mathrm{M}}(A, B) \Leftrightarrow \mathrm{Q}_{\mathrm{M}}(A, A \cap B)$

Monotonicity

\uparrow MON $\mathrm{Q}_{M}[A, B]$ and $A \subseteq A^{\prime} \subseteq M$ then $\mathrm{Q}_{M}\left[A^{\prime}, B\right]$.
\downarrow MON $\mathrm{Q}_{M}[A, B]$ and $A^{\prime} \subseteq A \subseteq M$ then $\mathrm{Q}_{M}\left[A^{\prime}, B\right]$.
MON $\uparrow \mathrm{Q}_{M}[A, B]$ and $B \subseteq B^{\prime} \subseteq M$ then $\mathrm{Q}_{M}\left[A, B^{\prime}\right]$.
MON $\downarrow \mathrm{Q}_{M}[A, B]$ and $B^{\prime} \subseteq B \subseteq M$ then $\mathrm{Q}_{M}\left[A, B^{\prime}\right]$.

Inference test

(1) Some boy is dirty.
(2) Some child is dirty.
(1) All children are dirty.
(2) All boys are dirty.
(1) All boys are muddy.
(2) All boys are dirty.
(1) No boy is dirty.
(2) No boy is muddy.
(1) Exactly five children are dirty.
(2) Exactly five boys are dirty.

The study of such 'easy' inferences on surface forms goes by the name 'natural logic' which is a thriving area of research

Monotonicity Universal

Monotonicity Universal (Barwise \& Cooper 1981)
All simple determiners are monotone or conjunctions of monotone determiners

Research questions

- Do all NL determiners satisfy ISOM, EXT, MON, and CONS?
- Only? Every third? An even number of?
- Do all simple NL determiners satisfy ISOM, EXT and CONS?

