Computational approaches to the explanation of universal properties of meaning

Fausto Carcassi & Jakub Szymanik

https://thelogicalgrammar.github.io/ESSLLI22_langevo_

Goals

- Overview of the thriving research area of semantic universals.
- Examples of concrete universals in content and logical vocabularies of Ls
- Different theoretical explanations
- Different computational modelling paradigms

Course Outline

- 1. Introduction to linguistic universals
- 2. Learnability explanations
- 3. Cultural evolution explanations
- 4. Complexity explanations
- 5. Communicative efficiency explanations

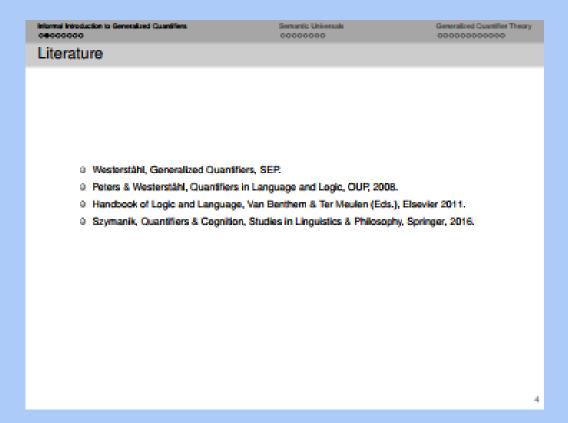
Today's Outline

- 1. What are meaning universals?
- 2. Examples:
 - 1. Quantifier universals
 - 2. Convexity
 - 3. Boolean universals
 - 4. Gradable adjectives
 - 5. Modals
 - 6. Responsive verbs

Introduction

Language variation and universals

- 1. Enormous variation **but** common properties across (almost) all Ls
- 2. Called language universals
- 3. Provide us with a window into our **cognition**
- 4. What are the limits of variation?
- 5. What are the cognitive sources of such limits?

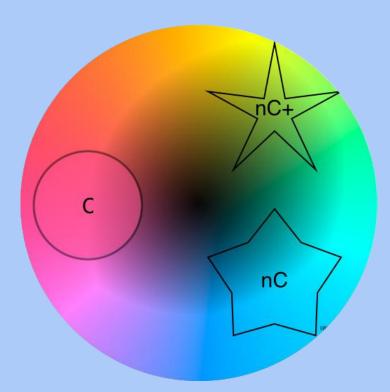

Examples of linguistic universals

- **Phonology**: All *spoken* languages have consonants and vowels. All *spoken* languages have at least one unrounded and one back vowel (Hyman 2008).
- Morphology: All languages have pronominal categories involving at least three persons and two numbers (Greenberg 1966; Bauer 2010).
- Grammar (syntax): All languages have verbs and nouns (Croft 1990). Grammatical rules are structure-dependent (Chomsky 1965)
- Semantics: ...

Quantifiers

• Double click to open pdf document:

Convexity


Convexity (Connectedness)

- Extending the notion of monotonicity
- No noun in English means 'bottle or eagle'.
- No quantifier means 'less than 5 or more than 10'.
- Informally, if two objects are blickets then, any object in between those two must also be a blicket.

Convex Quantifiers

- C is between A and B: if $A \subseteq C \subseteq B$ (or vice versa)
- So: Q is connected: if $A \subseteq C \subseteq B$ and Q(A) and Q(B), then Q(C).
- 'Between 5 and 10' or '5 to 10' vs. 'less than 5 or more than 10'.
- This property has also been called continuity by van Benthem (1984, 1986)
- **Theorem**. Q is monotone iff Q and $\neg Q$ are connected.

Convex Color Terms

Color terms across languages denote convex regions (Jaeger, 2010)

Convexity Universal

All lexical categories satisfy convexity (Gardenfors 2014)

Boolean Connectives

Boolean semantics

- Certain words in natural language can express Boolean functions
 - Functions from some n-product of {true, false} to {true, false}
- 'Maria is in Galway and Maria is a linguist'
- We can reconstruct the input/output relations:

Р	Q	Not P	P and Q
True	True	False	True
True	False	False	False
False	True	True	False
False	False	True	False

Boolean universals

- Suppose we restrict ourselves to Binary connectives
- Then, there are 16 possible operators
 - All the way of diving the 4 lines of a truth table with P and Q into true and false
- English has 'and', 'or', 'nor'
- But they can in principle all be lexicalized!
- What about other languages?

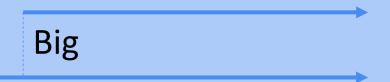
{and} Wari (Chapacuran)
{or} Maricopa (Yuman)
{and, or} Iraqw (Chusitic)
{and, or, nor} English (Indo-European)

Boolean semantics

- Two distinct questions:
 - Why do we only see some operators and not others, e.g., 'and' but not 'nand'?
 - Why do they come in certain combinations, e.g. never 'nor' alone?
- For some operators, there are some intuitively plausible answers
 - E.g., 'left projection' operator, which returns value of left argument
- However, others have received much discussion in the literature
 - E.g., why is there no 'nand'?

Gradable Adjectives

Adjectival semantics

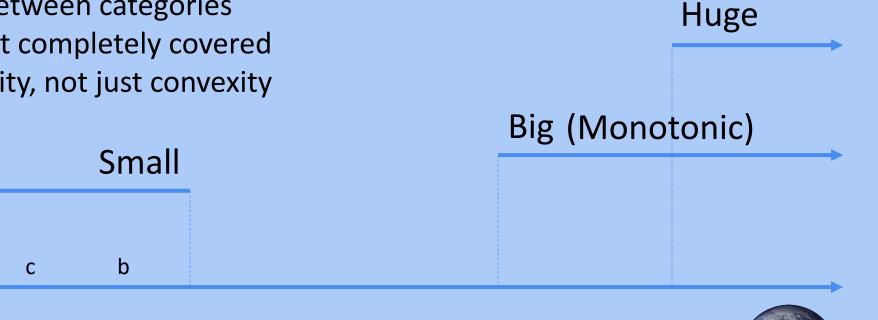

- Adjectives: Italian, red, tall, square
- Gradable adjectives:
 - *Very Italian, *very square
 - Very red, very tall
- Two big types of gradable adjectives:
 - Relative-standard: tall, short, cold, warm
 - Absolute standard: empty, full, straight, bent

Uses of gradable adjectives

- Gradable adjectives occur in two main contexts:
 - Measure uses: Roberta is 180 centimeters tall
 - Bare uses: Roberta is tall
- Relative-standard adjectives have some peculiarities:
 - Sorites paradox
 - If Chiara is tall, then someone 1mm shorter than Chiara is also tall.
 - Context sensitivity:
 - Chiara is tall (context: Italians) while Chiara is not tall (context: basketball players)
- The universal we consider applies to bare uses of gradable adjectives in a fixed context.

Monotonicity for gradable adjectives

- General definition of monotonicity:
 - A function *f* is *monotonically increasing* iff
 - for all x and y such that $x \le y$, $f(x) \le f(y)$
 - And *monotonically decreasing* if whenever $x \ge y$, then $f(x) \le f(y)$
- Intuitively, monotonically increasing functions preserve the order, and decreasing reverse it.
- Gradable adjectives (in a context) can be thought of as functions from degrees (which is an ordered set) to Booleans (which is an ordered set).


Monotonicity for gradable adjectives

Conceptual spaces? No, because:

Overlaps between categories 1.

а

- Space is not completely covered 2.
- 3. Monotonicity, not just convexity

Modality

Modal semantics

- Modals are expressions such as 'might', 'must', 'could', 'should', 'can'
- Attempting an exact definition is very hard, but roughly they can be used to talk about non-actual situations
- Since Kratzer (1981), we distinguish two axes of variation in modal meaning: force and flavour. Examples:

Strong (universal) forceWeak (possibility) forceEpistemic flavourThe keys must be on the tableIt may be rainingDeontic flavourYou must do your homeworkYou may park here

Modal semantics

- There's other flavours:
 - Bouletic (desire)
 - Teleological (goals)
 - And so on
- There's other forces
 - Arguably, 'should' is a necessity, but weaker than 'must'
- In English, modal verbs come with a fixed *force* and variable *flavour*
- In other languages, modals vary wrt force and not flavour
 - St'át'icmets (Rullmann, Matthewson & Davis 2008), Nez Perce (Deal 2011), Old English (Yanovich 2016), and Pintupi-Luritja (Gray 2021).

Universals of modal meaning

- The single axis of variability universal (Nauze 2008):
 - If a modal can express more than one flavor, it can only express one force (and mutatis mutandis for force and flavor).
- Second proposal (Vander Klok 2013):
 - A modal system as a whole only has lexically encoded force or flavour
- However, two counterexamples:
 - Washo (Bochnak 2015): A verb can vary both wrt to force and flavour
 - Koryak (Mocnik & Abramovitz 2019): A verb that can be used both to mean 'believe' (strong force) and 'allow for the possibility that' (weak force), and multiple flavours (doxastic and assertive)

Universals of modal meaning

- Independence of force and flavour universal (Steinert-Threlkeld 2022)
 - All modals in natural language satisfy the independence of force and flavor property: if a modal can express the pairs (fo1;fl1) and (fo2;fl2), then it can also express (fo1;fl2) and (fo2;fl1).
- This universal includes the cases that contradicted previous proposals
- And it excludes some meanings:
 - A modal *mighst* which behaves like a mix of:
 - *Might:* it can be used in epistemic possibility contexts
 - *Must:* in that it can be used in deontic necessity contexts.

Responsive Verbs

Responsive verbs

Types of verbs:

- Jakub *believes* that he is in Ireland
- # Jakub *believes* where Ireland is
- # Jakub wonders that he is in Ireland
- Jakub wonders where Ireland is
- Jakub knows that he is in Ireland
- Jakub knows where Ireland is

	Declarative	Interrogative	Example
Rogative	No	Yes	Wonder
Anti-rogative	Yes	No	Believe
Responsive	Yes	Yes	Know Forget

Lahiri 2002; Theiler, Roelofsen, and Aloni 2018; Uegaki 2018

Veridicality

- 'Know' is veridical wrt declarative complements:
- Jakub knows ESSLLI is in Ireland
- \rightarrow ESSLLI is in Ireland

'Know' is veridical wrt interrogative complements:

- Jakub knows where ESSLLI is
- & ESSLLI is in Ireland
- \rightarrow Jakub knows that ESSLLI is in Ireland
- 'Know' is veridically uniform!

'Be certain' is **not** veridical wrt declarative complements:

- Jakub is certain that ESSLLI is in Ireland
- -\-> ESSLLI is in Ireland

'Be certain' is **not** veridical wrt interrogative complements:

- Jakub is certain about where ESSLLI is
- & ESSLLI is in Ireland
- -\-> Jakub is certain that ESSLLI is in Ireland
- 'Is certain' is veridically uniform!

Veridical uniformity

- Based on these observations, we can formulate a universal:
- All responsive verbs are veridically uniform
 - (Spector and Egre 2015; Theiler, Roelofsen, and Aloni 2018)
- Why is this a substantial universal?
- Because it's easy to think of meanings for responsive verbs that do not satisfy it!
- E.g. knopinion:
- 'John knopinions that it will rain'
 - \rightarrow John knows that it will rain
 - Veridical!
- 'John knopinions whether it will rain'
 - \rightarrow John has an opinion about whether it will rain
 - Non veridical!

Some concluding remarks

General strategy:

- Pick a semantic domain
 - Quantifiers, Boolean operators, nouns, modal verbs, responsive verbs
- Define the space of possible meanings
 - By semantic type (quantifiers, adjectives)
 - or cognitive model (conceptual spaces)
- Define a restriction that...
 - Includes attested meanings
 - Excludes non-attested meanings
- This restriction is a universal to be explained!
- In the rest of the course we'll see strategies to explain these universals

Questions time!