Cultural Evolution

Evolving a language

ESSLLI 2022 - Fausto Carcassi \& Jakub Szymanik

A neural network can learn monotone quantifiers faster than non-monotone quantifiers.

Problem of Linkage
(Kirby 1999)

Iterated Learning: The idea

Cultural evolution

- Culture is hard to define
- One sense just includes music, art, and films.
- Our sense wider: roughly includes everything humans learn in virtue of belonging to a certain community.
- This includes: how to sit, eat, play, who Joanna Newsom is, and language
- Cultural evolution
-What are the rules that govern the way culture changes?
"The structure of a language is under intense selection because in its reproduction from generation to generation, it must pass through a narrow bottleneck: children's minds"

The iterated learning model

- We can model cultural evolution by an iterated process of change

The iterated learning model

- We can model cultural evolution by an iterated process of change

The iterated learning model

- We can model cultural evolution by an iterated process of change

The iterated learning model

- We can model cultural evolution by an iterated process of change

The iterated learning model

- We can model cultural evolution by an iterated process of change

The iterated learning model

- We can model cultural evolution by an iterated process of change
- Iterated Learning shows the effects of cognitive structure on language structure

The iterated learning model

Iterated Learning shows the effects of cognitive structure on language structure.

Monotone quantifiers are

Quantifiers more learnable are monotone

The iterated learning model

- Some simplifications:
- Only one cultural parent for each cultural child
- No horizontal transmission
- Iterated learning reveals learning biases!
- Iterated learning is a mechanism for learnability to influence language.
- We can explain some universals as the result of IL + certain learning biases.
- We can look at IL through the lens of the theory of Markov Chains

Iterated Learning \& Markov Chains

Markov chains: An example

- Suppose there are three rooms connected by corridors, as follows:

- You start in room A, and then move (facing the center) :
- left with probability 0.3
- right with probability 0.4
- stay where you are with prob 0.3
- A Markov Chain is (roughly) a (discrete-time) process that
- Changes state stochastically and
- Whose state at time t only depends on the state at time $t-1$ (Markov condition)

Markov chains: An example

- Question: how do we calculate the probability that you will be in B in three steps?
- We can represent the process with a transition matrix:

- We start with a one-hot vector that indicates we are in $B:[0,1,0]$
- And then do matrix multiplication three times

Markov chains: An example

Markov chains: An example

- Initial position washed out pretty fast!
- We are going towards a uniform distribution.
- The differences are all relative to where one is.
- Rather than 'pointing' to a specific place.
- Suppose instead that you have a preference to stay in room A, whenever you end up there:

	A	B	C
A	0.8	0.1	0.1
B	0.4	0.2	0.4
C	0.4	0.4	0.2

Markov chains: An example

	A	B	C
A	0.8	0.1	0.1
B	0.4	0.2	0.4
C	0.4	0.4	0.2
	0.56	0.24	0.2

	A	B	C
A	0.8	0.1	0.1
B	0.4	0.2	0.4
C	0.4	0.4	0.2

0.624	0.184	0.192

Stationary distribution

- When the situation is not symmetric across rooms, you might always tend to end up in a certain room over time
- Two possible reasons:
- When we get to A, we stick to it
- When we are in a different room, we tend to go to A
- We can see time evolution at https://www.mathematik.tu-clausthal.de/en/mathematics-interactive/simulation/markov-chain-discrete/
- Over time, it does not matter where one starts, one reaches a certain probability of being in each room
- (Note: condition of ergodicity)
- This distribution that we tend towards over time is called stationary
- Important insight: time average == space average
-Where the hell am I going with this?

Iterated learning is a Markov chain

- Now imagine:
- Instead of rooms we have all the possible languages (or lang fragments)
- Instead of 'timesteps' we have generations of cultural transmission
- Instead of 'moving' we have 'acquiring from parent'
- Conditional distribution over learner's language given teacher's
- Iterated Learning as a Markov Chain
- At each new generation, the learner acquires a language from the teacher
- How could the amount of data seen by the learner affect the process?
- Language spoken at each generation only depends on previous one
- Iterated learning can be thought of as a Markov Chain
- ...and therefore it has a stationary distribution!
- (With some weak assumptions)

The stationary distribution of IL

- Deep insight:
- Under IL, it doesn't matter where we start!
- (Assuming ergodicity)
- IL isn't (necessarily) a diachronic model
- How do we find the stationary distribution?
- Model iterated learning
- Pick a model of the domain (set of possible languages)
- Pick a model of learning
- Run simulation (or find first eigenvalue of transition matrix)
- Let's look at two models of learning: Bayesian learning and neural learning

Summary of the situation

-We started with the linkage problem: how does learnability influence language?

- This can be answered by iterated learning as a model of cultural evolution
- We saw that iterated learning can be interpreted as a Markov chain
- We need two ingredients for implementing IL as a Markov chain:
- The space of possible states (langs)
- A model of transition (learning)
- Bayesian inference is a model of language acquisition to combine with IL!

Bayesian Iterated Learning

Bayes' theorem

- Bayes' theorem is easy to prove:

$$
\begin{aligned}
P(H \& D) & =P(H \mid D) P(D) \\
& =P(D \mid H) P(H) \\
P(H \mid D) P(D) & =P(D \mid H) P(H) \\
P(H \mid D) & =\frac{P(D \mid H) P(H)}{P(D)}
\end{aligned}
$$

- And hard to understand!
- Four components: prior, likelihood, posterior, evidence

Bayesian learning

- Usually, we apply Bayes theorem to calculate $P(H \mid D)$, where:
- H is unobservable
- D is observable
- You can think of an application of Bayes theorem as a way of updating one's model of the world when new data comes in.
- A prior and a posterior then are relative to one update
- So we can think of one application of Bayes' theorem as an update in the state of knowledge given some data
- This gives a very natural way of thinking about the way humans could update their picture of unknown quantities given a stream of new evidence.

Language learning in Bayesian agents

- In language acquisition
- The hypotheses are possible languages / semantic objects
- The data is linguistic data produced by the hypotheses
- Exı
- H: section of conceptual space (nominal meaning)
- D: set of objects to which the noun applies
- Ex2
- H: section of a scale (adjectival meaning)
- D: set of tuples (degree, truth value)

Language Learning in Bayesian agents

In Bayesian language acquisition:

- Prior
- Encodes the cognitive biases towards some languages over others
- NOTE: This need not be language specific!
- E.g. simplicity bias is not linguistic
- Likelihood
- Encodes the probability that a language user with a specific language would produce each possible utterance in each possible situation
- Posterior
- The probability of each possible language given the observed utterance/situation
- Let's see a simple example of Bayesian language acquisition

A simple example

- Two objects, two words
- Each word refers to some of the objects
- Possible languages (at least one obj per word and one word per obj):
- Suppose that there is a bias against ambiguity, e.g. this prior:

L 1	L 2	L 3	L 4	L 5	L 6	L 7
0.1	0.1	0.1	0.1	0.1	0.25	0.25

A simple example

- Suppose the data is generated as follows:
- The speaker sees one object sampled at random
- Then they sample among the utterances compatible with the objects
- If we observed one datapoint from L2, (01, w1), the likelihood would be:

0.5			1.			0.5			0.5			0.			0.			1.		
L1	01	02	L2	01	02	L3	01	02	L4	01	02	L5	01	02	L6	01	02	L7	01	02
w_{1}	1	1	w_{1}	1	0	w1	1	1	w1	1	1	w_{1}	-	1	w1	-	1	w1	1	0
w2	1	1	w2	1	1	w2	1	-	w2	-	1	w2	1	1	w2	1	-	w2	-	1

- We then apply Bayes theorem and get the (unnormalized) posterior:

L_{1}	$\mathrm{~L}_{2}$	$\mathrm{~L}_{3}$	$\mathrm{~L}_{4}$	$\mathrm{~L}_{5}$	L 6	$\mathrm{~L}_{7}$
$0.1 * 0.5$	$0.1 * 1$	$0.1 * 0.5$	$0.1 * 0.5$	$0.1 * 0$.	$0.25 * 0$	$0.25 * 1$.

A simple example

- We get posterior:

L_{1}	$L 2$	$L 3$	$L 4$	$L 5$	$L 6$	$L 7$
0.1	0.2	0.1	0.1	0.	0.	0.5

- Even though the likelihood of ($01, \mathrm{w} 1$) is the same for $L 2$ and $L 7$, because of the prior $L 7$ has higher posterior probability.
- Last step: select a language based on the posterior. Two options:
- They can sample a language from the posterior
- Or select the language with the highest posterior probability (MAP)
- In this case, they might sample e.g., L2 or take the MAP L7

Bayesian IL \& stationary distribution

-What if we iterate this process?

- This can be thought of as running a Markov chain on the space of 7 languages
- Where the transition probability $x \rightarrow y$ is the prob of a learner learning y from a certain number of datapoints produced by true language x
- Question: What is the stationary distribution of this chain?
- I.e. what will be the distribution over languages eventually?
- Surprising answer (assuming sample agents):
- It doesn't depend on the number of datapoints
- It doesn't depend on starting language
- It's just the prior! (Griffiths \& Kalish 2007)

Convergence to the prior

Intuition:

- IL
- + Bayesian agents
- + Sampling agents
- Is a type of Gibbs sampling

$$
d_{0} \xrightarrow{P_{L A}(h \mid d)} h_{1} \xrightarrow{P_{P A}(d \mid h)} d_{1} \xrightarrow{P_{L A}(h \mid d)} h_{2} \xrightarrow{P_{P A}(d \mid h)} d_{2} \xrightarrow{P_{L A}(h \mid d)} \ldots
$$

$$
h_{1} \xrightarrow{\sum_{d} P_{P A}(d \mid h) P_{L A}(h \mid d)} h_{2} \xrightarrow{\sum_{d} P_{P A}(d \mid h) P_{L A}(h \mid d)} \ldots
$$

$$
d_{0} \xrightarrow{\sum_{h} P_{L A}(h \mid d) P_{P A}(d \mid h)} d_{1} \xrightarrow{\sum_{h} P_{L A}(h \mid d) P_{P A}(d \mid h)} d_{2} \longrightarrow \ldots
$$

$$
h_{1}, d_{1} \xrightarrow{P_{L A}(h \mid d) P_{P A}(d \mid h)} h_{2}, d_{2} \xrightarrow{P_{L A}(h \mid d) P_{P A}(d \mid h)}
$$

Bayesian IL: A temporary conclusion

- Temporary conclusion:
- IL+Bayesian learners alone is somewhat boring
- ...always prior = stationary distribution.
- Two ways to make it interesting:
- Use not-sampling agents, e.g., MAP or maximum-likelihood agents
- Hard to study mathematically
- Combine with other pressures, e.g., communicative accuracy
- Last lecture!
- Point: IL reveals cognitive biases, but Bayesian inference builds them in
- But we don't know the prior biases of ANNs!

Neural Iterated Learning

The evolution of monotonicity

- In the first lecture, we looked at monotonicity as a universal of the meaning of simple determiners.
- Yesterday, we saw that ANNs can learn some monotonic quantifiers faster than non-monotonic quantifiers.
- However, some non-monotonic quantifiers might still be easier than some monotonic ones.
- In Carcassi, Steinert-Threlkeld, \& Szymanik (2021), we look at an IL model.
- We implicitly search a much larger space of quantifiers.
- We show the evolution of quantifier meaning

The evolution of monotonicity

The evolution of monotonicity

The evolution of monotonicity

Cultural parent

Data
$$
[0,0,1,0] \quad 0.0
$$

Cultural child

The evolution of monotonicity

Frequency of languages spoken

The evolution of monotonicity

M is a random model
$1_{Q}=Q(M)=\operatorname{round}(N N(M))$

$$
H\left(1_{Q}\right)
$$

$1_{Q}^{-}=$a submodel of M is true

$$
H\left(1_{Q} \mid 1_{Q}^{-}\right)
$$

$\frac{H\left(1_{Q} \mid 1_{Q}^{-}\right)}{H\left(1_{Q}\right)}$: prop of $H\left(1_{Q}\right)$ left given 1_{Q}^{-}.

$$
\operatorname{mon}(Q):=1-\frac{H\left(1_{Q} \mid 1_{Q}^{-}\right)}{H\left(1_{Q}\right)}
$$

The evolution of monotonicity

The evolution of monotonicity

$$
\exists a \text { s.t. } \begin{cases}Q(x)=1 & \mathrm{a} \in \mathrm{x} \\ Q(x)=0 & \text { otherwise }\end{cases}
$$

Proper-noun-like quantifiers evolve in the first model because neural networks find it easy to exploit the identity of individual objects.

The evolution of monotonicity

Cultural parent
Cultural child

$[0,1,1,0]$	
0000	$[0,0,1,0] 0.0$
000000	$[1,0,1,0] 1.0$
\vdots	$[0,1,1,0] 1.0$
00000	\vdots

$\underbrace{000000}_{0}$

The evolution of monotonicity

Cultural parent
Data
Cultural child

$$
[1,0,1,0] \quad 0.0
$$

$[1,0,0,0] \quad 0.0$
$[0,0,1,1] \quad 1.0$

$\underset{0}{00000}$
[1, 1, 0, 0] 1.0
000000

The evolution of monotonicity

Cultural parent
Data
Cultural child

$$
[1,0,0,0] \quad 0.0
$$

The evolution of monotonicity

The only quantifiers that are robust across the permutations of the string are the quantitative quantifiers.

$$
\begin{aligned}
& \#=\text { size of } A \cap B \text { in } M \\
& H\left(1_{Q} \mid \#\right) \quad \frac{H\left(1_{Q} \mid \#\right)}{H\left(1_{Q}\right)}
\end{aligned}
$$

The evolution of monotonicity

The evolution of monotonicity

- By "threshold quantifier" we mean that the average confidence in its truth is a monotonic function of the model size.
- This is not simply a side effect of the fact that there are more models with middle number of ones.

Summary

- Iterated Learning model as a way of solving the linkage problem
- IL requires a model of learning, two natural options: Bayes \& ANNs
- With sampling Bayesian learners, IL converges to the prior
- We'll come back to IL on Friday
- With neural learners, we can use IL to reveal biases
- We used this to reveal the IL preference for monotonicity
- And for quantity!
- Questions?

